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Moments and Other Measures in Terms of Expectations

Moments:

The r th order moment about any point A of a variable X is given by:

µ′
r =

n∑
i=1

pi (xi − A)r (1)

This is derived by replacing frequencies with probabilities.

If X is a continuous random variable with probability density function f (x), then:

µ′
r =

∫ ∞

−∞
(x − A)r f (x)dx (2)
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Central Moments

The r th order central moment is given by:

For a discrete random variable:

µr =
n∑

i=1

pi (xi − µ)r (3)

For a continuous random variable:

µr =

∫ ∞

−∞
(x − µ)r f (x)dx (4)

The expectation form:
µr = E [(X − µ)r ] (5)
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Variance

Definition:

Variance of a random variable X is the second-order central moment and is defined as:

µ2 = V (X ) = E [X 2]− (E [X ])2 (6)

Using moments about the origin:
V (X ) = µ′

2 − (µ′
1)

2 (7)

where µ′
1 and µ′

2 are the first and second moments about the origin.
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Theorem: Variance Scaling Property

Statement:

If X is a random variable and a, b are constants, then:

V (aX + b) = a2V (X ) (8)
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Proof of Theorem

By definition of variance:
V (aX + b) = E [(aX + b − E [aX + b])2] (9)

Expanding expectation:
= E [(aX + b − aE [X ]− b)2] (10)

Simplifying:
= E [(aX − aE [X ])2] = E [a2(X − E [X ])2] (11)

Using expectation properties:
= a2E [(X − E [X ])2] = a2V (X ) (12)
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Example 7: Variance Calculation

Given Probability Distribution Calculate Variance:

X p(X )

−2 0.15
−1 0.30
0 0
1 0.30
2 0.25

(i) Computing V (X ):

Variance formula:
V (X ) = E [X 2]− (E [X ])2 (13)

Using values from Example 6:

V (X ) = 2.2− (0.2)2 = 2.2− 0.04 = 2.16 (14)
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Variance of a Linear Transformation

(ii) Computing V (2X + 3):

Using the theorem: V (aX + b) = a2V (X )

V (2X + 3) = 4V (X ) (15)

Substituting V (X ) = 2.16:
V (2X + 3) = 4(2.16) = 8.64 (16)
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Thank You!
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