
Understanding PyTorch: Tensors, Vectors, and Matrices

Bindeshwar Singh Kushwaha

PostNetwork Academy

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 1 / 10

What is PyTorch?

PyTorch is an open-source deep learning framework.

It supports dynamic computation graphs.

Designed to be Pythonic and flexible.

Commonly used for research and production in AI/ML.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 2 / 10

What is PyTorch?

PyTorch is an open-source deep learning framework.

It supports dynamic computation graphs.

Designed to be Pythonic and flexible.

Commonly used for research and production in AI/ML.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 2 / 10

What is PyTorch?

PyTorch is an open-source deep learning framework.

It supports dynamic computation graphs.

Designed to be Pythonic and flexible.

Commonly used for research and production in AI/ML.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 2 / 10

What is PyTorch?

PyTorch is an open-source deep learning framework.

It supports dynamic computation graphs.

Designed to be Pythonic and flexible.

Commonly used for research and production in AI/ML.

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 2 / 10

Types of Tensors

A scalar is a 0-dimensional tensor.

A vector is a 1-dimensional tensor.

A matrix is a 2-dimensional tensor.

Tensors can be of higher dimensions (3D, 4D, ...).

Python Code
import torch

s = torch.tensor(5) # Scalar

v = torch.tensor([1.0, 2.0, 3.0]) # Vector

m = torch.tensor([[1, 2], [3, 4]]) # Matrix

print("Scalar:", s)

print("Vector:", v)

print("Matrix:", m)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 3 / 10

Types of Tensors

A scalar is a 0-dimensional tensor.

A vector is a 1-dimensional tensor.

A matrix is a 2-dimensional tensor.

Tensors can be of higher dimensions (3D, 4D, ...).

Python Code
import torch

s = torch.tensor(5) # Scalar

v = torch.tensor([1.0, 2.0, 3.0]) # Vector

m = torch.tensor([[1, 2], [3, 4]]) # Matrix

print("Scalar:", s)

print("Vector:", v)

print("Matrix:", m)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 3 / 10

Types of Tensors

A scalar is a 0-dimensional tensor.

A vector is a 1-dimensional tensor.

A matrix is a 2-dimensional tensor.

Tensors can be of higher dimensions (3D, 4D, ...).

Python Code
import torch

s = torch.tensor(5) # Scalar

v = torch.tensor([1.0, 2.0, 3.0]) # Vector

m = torch.tensor([[1, 2], [3, 4]]) # Matrix

print("Scalar:", s)

print("Vector:", v)

print("Matrix:", m)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 3 / 10

Types of Tensors

A scalar is a 0-dimensional tensor.

A vector is a 1-dimensional tensor.

A matrix is a 2-dimensional tensor.

Tensors can be of higher dimensions (3D, 4D, ...).

Python Code
import torch

s = torch.tensor(5) # Scalar

v = torch.tensor([1.0, 2.0, 3.0]) # Vector

m = torch.tensor([[1, 2], [3, 4]]) # Matrix

print("Scalar:", s)

print("Vector:", v)

print("Matrix:", m)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 3 / 10

Creating Tensors

Use torch.tensor(), torch.zeros(), torch.ones(), etc.

Specify shape, data type, and device as needed.

Python Code
import torch

a = torch.tensor([1, 2, 3])

b = torch.zeros((2, 3))

c = torch.ones((3, 3), dtype=torch.float32)

print(a)

print(b)

print(c)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 4 / 10

Creating Tensors

Use torch.tensor(), torch.zeros(), torch.ones(), etc.

Specify shape, data type, and device as needed.

Python Code
import torch

a = torch.tensor([1, 2, 3])

b = torch.zeros((2, 3))

c = torch.ones((3, 3), dtype=torch.float32)

print(a)

print(b)

print(c)

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 4 / 10

Tensor Properties

.shape: shape of the tensor

.dtype: data type

.device: where the tensor is stored (CPU or GPU)

Python Code
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])

print(x.shape) # torch.Size([2, 3])

print(x.dtype) # torch.int64

print(x.device) # cpu

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 5 / 10

Tensor Properties

.shape: shape of the tensor

.dtype: data type

.device: where the tensor is stored (CPU or GPU)

Python Code
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])

print(x.shape) # torch.Size([2, 3])

print(x.dtype) # torch.int64

print(x.device) # cpu

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 5 / 10

Tensor Properties

.shape: shape of the tensor

.dtype: data type

.device: where the tensor is stored (CPU or GPU)

Python Code
import torch

x = torch.tensor([[1, 2, 3], [4, 5, 6]])

print(x.shape) # torch.Size([2, 3])

print(x.dtype) # torch.int64

print(x.device) # cpu

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 5 / 10

Arithmetic Operations

Element-wise operations: +, -, *, /

Matrix multiplication: torch.mm() or @

Python Code
import torch

a = torch.tensor([[1, 2], [3, 4]])

b = torch.tensor([[5, 6], [7, 8]])

print(a + b) # Addition

print(a * b) # Element-wise multiplication

print(torch.mm(a, b)) # Matrix multiplication

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 6 / 10

Arithmetic Operations

Element-wise operations: +, -, *, /

Matrix multiplication: torch.mm() or @

Python Code
import torch

a = torch.tensor([[1, 2], [3, 4]])

b = torch.tensor([[5, 6], [7, 8]])

print(a + b) # Addition

print(a * b) # Element-wise multiplication

print(torch.mm(a, b)) # Matrix multiplication

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 6 / 10

Tensors on GPU

Use .to(’cuda’) or .cuda() to move to GPU.

Always check GPU availability using torch.cuda.is available()

CUDA stands for Compute Unified Device Architecture.

It is a parallel computing platform and programming model developed by NVIDIA that allows
you to use the GPU (Graphics Processing Unit) to perform general-purpose computation —
not just graphics.

Python Code
import torch

if torch.cuda.is_available():

x = torch.tensor([1.0, 2.0])

x = x.to(’cuda’)

print(x.device) # Should print "cuda:0"

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 7 / 10

Tensors on GPU

Use .to(’cuda’) or .cuda() to move to GPU.

Always check GPU availability using torch.cuda.is available()

CUDA stands for Compute Unified Device Architecture.

It is a parallel computing platform and programming model developed by NVIDIA that allows
you to use the GPU (Graphics Processing Unit) to perform general-purpose computation —
not just graphics.

Python Code
import torch

if torch.cuda.is_available():

x = torch.tensor([1.0, 2.0])

x = x.to(’cuda’)

print(x.device) # Should print "cuda:0"

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 7 / 10

Automatic Differentiation (Autograd)

PyTorch tracks operations on tensors with requires grad=True

Use .backward() to compute gradients.

Python Code
import torch

x = torch.tensor(2.0, requires_grad=True)

y = x**3 + 2*x**2 + 3*x + 1

y.backward()

print(x.grad) # dy/dx = 3x^2 + 4x + 3 = 23 when x=2

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 8 / 10

Automatic Differentiation (Autograd)

PyTorch tracks operations on tensors with requires grad=True

Use .backward() to compute gradients.

Python Code
import torch

x = torch.tensor(2.0, requires_grad=True)

y = x**3 + 2*x**2 + 3*x + 1

y.backward()

print(x.grad) # dy/dx = 3x^2 + 4x + 3 = 23 when x=2

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 8 / 10

Reach PostNetwork Academy

Website
www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 9 / 10

Reach PostNetwork Academy

Website
www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 9 / 10

Reach PostNetwork Academy

Website
www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 9 / 10

Reach PostNetwork Academy

Website
www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 9 / 10

Thank You!

Bindeshwar Singh Kushwaha (PostNetwork Academy) Understanding PyTorch: Tensors, Vectors, and Matrices 10 / 10

