Binomial Distribution Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

э.

イロト 不得 トイヨト イヨト

Binomial Distribution Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

э.

イロト 不得 トイヨト イヨト

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
⁽¹⁾

where:

• n = total number of trials

3

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
⁽¹⁾

where:

- n = total number of trials
- k = number of successes

э.

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
⁽¹⁾

where:

- n = total number of trials
- k = number of successes
- p = probability of success in each trial

э.

$$P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$
⁽¹⁾

where:

- n = total number of trials
- k = number of successes
- p = probability of success in each trial
- $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binomial coefficient

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つ へ つ

• The binomial coefficient $\binom{n}{k}$ counts the number of ways to choose k successes from n trials.

- The binomial coefficient $\binom{n}{k}$ counts the number of ways to choose k successes from n trials.
- The term p^k represents the probability of exactly k successes.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つ へ つ

- The binomial coefficient $\binom{n}{k}$ counts the number of ways to choose k successes from n trials.
- The term p^k represents the probability of exactly k successes.
- The term $(1-p)^{n-k}$ accounts for the probability of the remaining (n-k) failures.

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つ へ つ

- The binomial coefficient $\binom{n}{k}$ counts the number of ways to choose k successes from n trials.
- The term p^k represents the probability of exactly k successes.
- The term $(1 p)^{n-k}$ accounts for the probability of the remaining (n k) failures.
- Multiplying these terms together gives the probability of observing exactly k successes in n trials.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

• n = 3, k = 2, p = 0.5

- n = 3, k = 2, p = 0.5
- Compute binomial coefficient:

$$\binom{3}{2} = \frac{3!}{2!(3-2)!} = 3 \tag{2}$$

- n = 3, k = 2, p = 0.5
- Compute binomial coefficient:

$$\binom{3}{2} = \frac{3!}{2!(3-2)!} = 3 \tag{2}$$

• Compute probability:

$$P(X = 2) = 3 \times (0.5)^2 \times (0.5)^1$$
(3)

- n = 3, k = 2, p = 0.5
- Compute binomial coefficient:

$$\binom{3}{2} = \frac{3!}{2!(3-2)!} = 3 \tag{2}$$

• Compute probability:

$$P(X = 2) = 3 \times (0.5)^2 \times (0.5)^1$$
(3)

• Final result:

$$P(X=2) = 3 \times 0.25 \times 0.5 = 0.375 \tag{4}$$

$$P(X = x) = {n \choose x} p^{x} q^{n-x}, \quad x = 0, 1, 2, ..., n$$

where:

• *n* is the number of independent trials,

(日) (周) (日) (日) (日)

$$P(X = x) = {n \choose x} p^{x} q^{n-x}, \quad x = 0, 1, 2, ..., n$$

where:

- n is the number of independent trials,
- x is the number of successes in n trials,

(日) (周) (日) (日) (日)

$$P(X = x) = {n \choose x} p^{x} q^{n-x}, \quad x = 0, 1, 2, ..., n$$

where:

- n is the number of independent trials,
- x is the number of successes in n trials,
- *p* is the probability of success in each trial,

3

イロト 不同 トイヨト イヨト

$$P(X = x) = {n \choose x} p^{x} q^{n-x}, \quad x = 0, 1, 2, ..., n$$

where:

- *n* is the number of independent trials,
- x is the number of successes in n trials,
- p is the probability of success in each trial,
- q = 1 p is the probability of failure in each trial.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

• The binomial distribution is the probability distribution of the sum of n independent Bernoulli variates.

- The binomial distribution is the probability distribution of the sum of n independent Bernoulli variates.
- If X is a binomially distributed random variable with parameters n and p, then we may write it as $X \sim B(n, p)$.

(ロ) (同) (三) (三) (三) (0) (0)

- The binomial distribution is the probability distribution of the sum of n independent Bernoulli variates.
- If X is a binomially distributed random variable with parameters n and p, then we may write it as $X \sim B(n, p)$.
- If X and Y are two binomially distributed independent random variables with parameters (n_1, p) and (n_2, p) respectively, then their sum also follows a binomial distribution with parameters $n_1 + n_2$ and p. However, if the probability of success is not the same for the two random variables, this property does not hold.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

• Exactly 3 heads

E nar

- Exactly 3 heads
- Less than 3 heads

E nar

イロト 不同 とくほ とくほ とう

- Exactly 3 heads
- Less than 3 heads
- More than 3 heads

3

イロト 不同 トイヨト イヨト

- Exactly 3 heads
- Less than 3 heads
- More than 3 heads
- At most 3 heads

3

イロト 不同 トイヨト イヨト

- Exactly 3 heads
- Less than 3 heads
- More than 3 heads
- At most 3 heads
- At least 3 heads

3

- Exactly 3 heads
- Less than 3 heads
- More than 3 heads
- At most 3 heads
- At least 3 heads
- More than 6 heads

э.

イロン 不同 とくほと 不同と

• Number of trials: n = 6

- Number of trials: n = 6
- Probability of success (head): $p = \frac{1}{2}$

- Number of trials: n = 6
- Probability of success (head): $p = \frac{1}{2}$
- Probability of failure: $q = 1 p = \frac{1}{2}$

- Number of trials: n = 6
- Probability of success (head): $p = \frac{1}{2}$
- Probability of failure: $q = 1 p = \frac{1}{2}$
- Let X be the number of successes in n trials.

- Number of trials: n = 6
- Probability of success (head): $p = \frac{1}{2}$
- Probability of failure: $q = 1 p = \frac{1}{2}$
- Let X be the number of successes in n trials.
- By binomial distribution:

$$P(X=x) = \binom{6}{x} p^{x} q^{6-x}$$

Calculations

• (i) Exactly 3 heads:

$$P(X=3) = {\binom{6}{3}} \left(\frac{1}{2}\right)^6 = \frac{20}{64} = \frac{5}{16}$$

Calculations

• (i) Exactly 3 heads:

$$P(X=3) = \binom{6}{3} \left(\frac{1}{2}\right)^6 = \frac{20}{64} = \frac{5}{16}$$

• (ii) Less than 3 heads:

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= {\binom{6}{0}} \left(\frac{1}{2}\right)^6 + {\binom{6}{1}} \left(\frac{1}{2}\right)^6 + {\binom{6}{2}} \left(\frac{1}{2}\right)^6$$
$$= \frac{1}{64} + \frac{6}{64} + \frac{15}{64} = \frac{22}{64} = \frac{11}{32}$$

Calculations

• (i) Exactly 3 heads:

$$P(X=3) = \binom{6}{3} \left(\frac{1}{2}\right)^6 = \frac{20}{64} = \frac{5}{16}$$

• (ii) Less than 3 heads:

$$P(X < 3) = P(X = 0) + P(X = 1) + P(X = 2)$$
$$= {\binom{6}{0}} \left(\frac{1}{2}\right)^6 + {\binom{6}{1}} \left(\frac{1}{2}\right)^6 + {\binom{6}{2}} \left(\frac{1}{2}\right)^6$$
$$= \frac{1}{64} + \frac{6}{64} + \frac{15}{64} = \frac{22}{64} = \frac{11}{32}$$

• (iii) More than 3 heads:

$$P(X > 3) = P(X = 4) + P(X = 5) + P(X = 6)$$
$$= \frac{15}{64} + \frac{6}{64} + \frac{1}{64} = \frac{22}{64} = \frac{11}{32}$$

3

イロト 不同 とくほ とくほ とう

• (iv) At most 3 heads:

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$
$$= \frac{22}{64} + \frac{20}{64} = \frac{42}{64} = \frac{21}{32}$$

3

• (iv) At most 3 heads:

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$
$$= \frac{22}{64} + \frac{20}{64} = \frac{42}{64} = \frac{21}{32}$$

• (v) At least 3 heads:

$$P(X \ge 3) = 1 - P(X < 3)$$
$$= 1 - \frac{11}{32} = \frac{21}{32}$$

• (iv) At most 3 heads:

$$P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)$$
$$= \frac{22}{64} + \frac{20}{64} = \frac{42}{64} = \frac{21}{32}$$

• (v) At least 3 heads:

$$P(X \ge 3) = 1 - P(X < 3)$$

= $1 - \frac{11}{32} = \frac{21}{32}$

• (vi) More than 6 heads:

P(X > 6) = 0

(impossible event)

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э.

イロト 不得 トイヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э

イロト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

э

イロト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

A D > A B > A B > A B >

Thank You!