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Introduction

Expectation (or expected value) is a fundamental concept in probability and statistics.

It provides a measure of the central tendency of a random variable.

We discuss two key theorems: Addition and Multiplication Theorems of Expectation.
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Addition Theorem of Expectation

Theorem
If X and Y are two random variables, then:

E(X + Y ) = E(X ) + E(Y )

The expected value of the sum of two random variables is equal to the sum of their expected values.

This holds for any finite number of random variables:

E(X1 + X2 + · · ·+ Xn) = E(X1) + E(X2) + · · ·+ E(Xn)

The theorem holds regardless of whether the variables are independent or dependent.
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Proof of Addition Theorem

By definition, expectation is computed as:

E(X ) =
∑
x

xP(X = x)

Similarly,

E(Y ) =
∑
y

yP(Y = y)

For two discrete random variables:

E(X + Y ) =
∑
x,y

(x + y)P(X = x ,Y = y)

Distributing the sum,

E(X + Y ) =
∑
x,y

xP(X = x ,Y = y) +
∑
x,y

yP(X = x ,Y = y)

Separating terms,

E(X + Y ) =
∑
x

xP(X = x) +
∑
y

yP(Y = y) = E(X ) + E(Y )
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Multiplication Theorem of Expectation

Theorem
If X and Y are two independent random variables, then:

E(XY ) = E(X )E(Y )

The expected value of the product of two independent random variables is the product of their
expected values.

This does not necessarily hold if X and Y are dependent.
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Proof of Multiplication Theorem

By definition,

E(XY ) =
∑
x,y

xyP(X = x ,Y = y)

Since X and Y are independent, we can write:

P(X = x ,Y = y) = P(X = x)P(Y = y)

Substituting this,

E(XY ) =
∑
x,y

xyP(X = x)P(Y = y)

Separating sums,

E(XY ) =

(∑
x

xP(X = x)

)(∑
y

yP(Y = y)

)
= E(X )E(Y )
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Covariance

For a bivariate frequency distribution, covariance between two variables X and Y is defined as:

Cov(X ,Y ) =

∑
fi (xi − X̄ )(yi − Ȳ )∑

fi
(1)

For a bivariate probability distribution:

Cov(X ,Y ) =

{∑
(xi − E[X ])(yi − E[Y ])pij , discrete case∫ ∫
(x − E[X ])(y − E[Y ])f (x , y)dxdy , continuous case

(2)

Using expectation:
Cov(X ,Y ) = E[XY ]− E[X ]E[Y ] (3)

If X and Y are independent, then E[XY ] = E[X ]E[Y ]
Hence, Cov(X ,Y ) = 0
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