Bivariate Discrete Random Variables Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

э.

イロト イヨト イヨト

<ロ> <同> <同> < 三> < 三> < 三> < 三</p>

- **Definition:** Let X and Y be two discrete random variables defined on the sample space S of a random experiment. Then, the function (X, Y) defined on the same sample space is called a **two-dimensional discrete random variable**.
 - (X, Y) is a two-dimensional random variable if its possible values are finite or countably infinite.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

- (X, Y) is a two-dimensional random variable if its possible values are finite or countably infinite.
- Each value of X and Y is represented as a point (x, y) in the XY-plane.

- (X, Y) is a two-dimensional random variable if its possible values are finite or countably infinite.
- Each value of X and Y is represented as a point (x, y) in the XY-plane.
- $\bullet\,$ Example: Consider placing three balls b_1, b_2, b_3 randomly in three cells.

- (X, Y) is a two-dimensional random variable if its possible values are finite or countably infinite.
- Each value of X and Y is represented as a point (x, y) in the XY-plane.
- $\bullet\,$ Example: Consider placing three balls $b_1, \, b_2, \, b_3$ randomly in three cells.
- The number of balls in a cell and the number of occupied cells form discrete random variables.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Table 6.1: Possible Outcomes of Placing Three Balls in Three Cells

X (Number of balls in Cell 1) can take values: 0, 1, 2, 3

Y (Number of occupied cells) can take values: 1, 2, 3

The possible ordered pairs (X, Y) are:

(0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

Arrangement	Cell 1	Cell 2	Cell 3
1	<i>b</i> ₁	b2	b3
2	<i>b</i> ₁	b3	b2
3	b2	<i>b</i> ₁	b3
4	b2	b3	b1
5	b3	<i>b</i> ₁	b2
6	<i>b</i> 3	b2	<i>b</i> ₁
7	b_1, b_2	b3	_
8	b_1, b_2	_	b ₃
9	_	b_1, b_2	b3
10	b_1, b_3	b2	_
11	b_1, b_3	_	b2
12	_	b_1, b_3	b2
13	b2, b3	<i>b</i> ₁	
14	b_2, b_3	-	<i>b</i> 1
15	_	b2, b3	<i>b</i> 1
16	<i>b</i> 1	b_2, b_3	
17	<i>b</i> ₁		b2, b3
18	-	^b 1	b_2, b_3
19	^b 2	b3, b1	
20	<i>b</i> ₂	_	b3, b1
21	-	<i>b</i> 2	b3, b1
22	<i>b</i> 3	b1, b2	
23	<i>b</i> 3	-	b1, b2
24	-	<i>b</i> 3	b1, b2
25	b_1, b_2, b_3	-	-
26	-	b_1, b_2, b_3	-
27	-	-	b_1, b_2, b_3

э.

イロト 不得 トイヨト イヨト

The joint probability mass function (PMF) p(x, y) is defined as:

$$p(x, y) = P(X = x, Y = y)$$

E nar

イロト イヨト イヨト イヨト

The joint probability mass function (PMF) p(x, y) is defined as:

$$p(x, y) = P(X = x, Y = y)$$

Joint Probability Table:

E nac

イロト 不同 とくほ とくほ とう

The joint probability mass function (PMF) p(x, y) is defined as:

$$p(x, y) = P(X = x, Y = y)$$

Joint Probability Table:

$X \setminus Y$	1	2	3	P(X)
0	$\frac{2}{27}$	$\frac{6}{27}$	0	$\frac{8}{27}$
1	0	$\frac{6}{27}$	$\frac{6}{27}$	$\frac{12}{27}$
2	0	$\frac{6}{27}$	0	$\frac{6}{27}$
3	$\frac{1}{27}$	Ō	0	$\frac{1}{27}$
P(Y)	$\frac{3}{27}$	$\frac{18}{27}$	$\frac{6}{27}$	1

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

3

イロト 不同 トイヨト イヨト

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$
$$P(X = 0) = \frac{8}{27}, \quad P(X = 1) = \frac{12}{27}, \quad P(X = 2) = \frac{6}{27}, \quad P(X = 3) = \frac{1}{27}$$

3

イロト 不同 トイヨト イヨト

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

$$P(X = 0) = \frac{8}{27}, \quad P(X = 1) = \frac{12}{27}, \quad P(X = 2) = \frac{6}{27}, \quad P(X = 3) = \frac{1}{27}$$
Marginal PMF of Y:

$$P(Y = y) = \sum_{x} P(X = x, Y = y)$$

3

イロト イロト イヨト イヨト

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$
$$P(X = 0) = \frac{8}{27}, \quad P(X = 1) = \frac{12}{27}, \quad P(X = 2) = \frac{6}{27}, \quad P(X = 3) = \frac{1}{27}$$

Marginal PMF of Y:

$$P(Y = y) = \sum_{x} P(X = x, Y = y)$$
$$P(Y = 1) = \frac{3}{27}, \quad P(Y = 2) = \frac{18}{27}, \quad P(Y = 3) = \frac{6}{27}$$

3

イロト 不同 トイヨト イヨト

The conditional probability mass function is given by:

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

E nar

イロト イヨト イヨト イヨト

The conditional probability mass function is given by:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

Example: Conditional PMF of X given Y=2

$$P(X = 0 \mid Y = 2) = \frac{6}{18} = \frac{1}{3}, \quad P(X = 1 \mid Y = 2) = \frac{6}{18} = \frac{1}{3}, \quad P(X = 2 \mid Y = 2) = \frac{6}{18} = \frac{1}{3}$$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つ へ つ

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

3

イロト イロト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

э

イロト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

э

イロン 不同 とくほと 不同と

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

A D > A B > A B > A B >

Thank You!

(ロ) (同) (三) (三) (三) (0) (○)