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What are Vectors?

A vector is a mathematical object that has both magnitude and direction.

Vectors are used to represent quantities such as displacement, velocity, and force in physics and engineering.

In mathematics, vectors are elements of vector spaces and can exist in different dimensions.

Common vector spaces include real number space (Rn) and complex number space (Cn).
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Example - 3D Vectors Visualization
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Example 1.2 - Vector Operations
Let u = (2, 4,−5) and v = (1, 6, 9). Then:

u + v = (2 + 1, 4 + 6,−5 + 9) = (3, 10, 4)

7u = (7(2), 7(4), 7(−5)) = (14, 28,−35)

−v = (−1(1, 6, 9)) = (−1,−6,−9)

3u − 5v = (6, 12,−15) + (−5, 30,−45) = (1,−18,−60)

The zero vector 0 = (0, 0, ..., 0) satisfies:

u + 0 = u

If u =

23
4

, v =

31
2

, then:
2u − 3v =

46
8

+

−9
−3
−6

 =

−5
3
2


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Theorem - Properties of Vectors with Examples
(u + v) + w = u + (v + w)
Example: Let u = (1, 2), v = (3, 4), w = (5, 6), then:

((1, 2) + (3, 4)) + (5, 6) = (4, 6) + (5, 6) = (9, 12)

(1, 2) + ((3, 4) + (5, 6)) = (1, 2) + (8, 10) = (9, 12)

u + 0 = u
Example: (3, 4) + (0, 0) = (3, 4)
u + (−u) = 0
Example: (5,−2) + (−5, 2) = (0, 0)
u + v = v + u
Example: (1, 3) + (4, 2) = (5, 5) = (4, 2) + (1, 3)
k(u + v) = ku + kv
Example: Let k = 2, u = (1, 2), v = (3, 4), then:

2((1, 2) + (3, 4)) = 2(4, 6) = (8, 12)

2(1, 2) + 2(3, 4) = (2, 4) + (6, 8) = (8, 12)

(k + k ′)u = ku + k ′u
Example: Let k = 2, k ′ = 3, u = (1, 2), then:

(2 + 3)(1, 2) = 5(1, 2) = (5, 10)

2(1, 2) + 3(1, 2) = (2, 4) + (3, 6) = (5, 10)

(kk ′)u = k(k ′u)
Example: Let k = 2, k ′ = 3, u = (1, 2), then:

(2 · 3)(1, 2) = 6(1, 2) = (6, 12)

2(3(1, 2)) = 2(3, 6) = (6, 12)

1u = u
Example: 1(3, 4) = (3, 4)
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Example: Let k = 2, k ′ = 3, u = (1, 2), then:

(2 · 3)(1, 2) = 6(1, 2) = (6, 12)

2(3(1, 2)) = 2(3, 6) = (6, 12)

1u = u
Example: 1(3, 4) = (3, 4)
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Dot (Inner) Product

Consider arbitrary vectors u, v ∈ Rn, where:

u = (a1, a2, ..., an), v = (b1, b2, ..., bn)

The dot product is defined as:
u · v = a1b1 + a2b2 + ...+ anbn

If u · v = 0, then u and v are orthogonal (perpendicular).
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Example 1.3 - Dot Product

Let u = (1, 2, 3), v = (4, 5,−1), and w = (2, 7, 4).

u · v = (1)(4) + (2)(5) + (3)(−1) = 4 + 10− 3 = 9

u · w = (1)(2) + (2)(7) + (3)(4) = 2 + 14 + 12 = 28

v · w = (4)(2) + (5)(7) + (−1)(4) = 8 + 35− 4 = 39
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Example - Orthogonal Vectors

Two vectors u and v are orthogonal if their dot product is zero: u · v = 0.

Example: Let u = (3,−2, 1) and v = (2, 4,−8), then:

u · v = (3)(2) + (−2)(4) + (1)(−8)

= 6− 8− 8 = −10

Since u · v ̸= 0, these vectors are not orthogonal.

Now, consider u = (1, 2,−2) and v = (2,−1, 1), then:

u · v = (1)(2) + (2)(−1) + (−2)(1)

= 2− 2− 2 = 0

Since u · v = 0, these vectors are orthogonal.
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