Supervised Learning in Machine Learning Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

ъ

• Introduction to Supervised Learning

3

- Introduction to Supervised Learning
- Features and Labels in a Dataset

3

- Introduction to Supervised Learning
- Features and Labels in a Dataset
- Supervised Learning Problem Setting

- Introduction to Supervised Learning
- Features and Labels in a Dataset
- Supervised Learning Problem Setting
- Mathematical Representation

- Introduction to Supervised Learning
- Features and Labels in a Dataset
- Supervised Learning Problem Setting
- Mathematical Representation
- Summary

- Introduction to Supervised Learning
- Features and Labels in a Dataset
- Supervised Learning Problem Setting
- Mathematical Representation
- Summary
- Sources

- Introduction to Supervised Learning
- Features and Labels in a Dataset
- Supervised Learning Problem Setting
- Mathematical Representation
- Summary
- Sources
- Reach PostNetwork Academy

- Introduction to Supervised Learning
- Features and Labels in a Dataset
- Supervised Learning Problem Setting
- Mathematical Representation
- Summary
- Sources
- Reach PostNetwork Academy
- Thank You

• Supervised learning is a machine learning method where the model learns from labeled data.

- Supervised learning is a machine learning method where the model learns from labeled data.
- The data consists of input features (x1, x2, x3) and an output label (y).

- Supervised learning is a machine learning method where the model learns from labeled data.
- The data consists of input features (x1, x2, x3) and an output label (y).
- The goal is to find a function that maps inputs to correct outputs.

- Supervised learning is a machine learning method where the model learns from labeled data.
- The data consists of input features (x1, x2, x3) and an output label (y).
- The goal is to find a function that maps inputs to correct outputs.
- Example: Predicting student exam scores based on study hours.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

• A dataset is a collection of examples used to train a model.

3

イロト イロト イヨト イヨト

- A dataset is a collection of examples used to train a model.
- Each example consists of:
 - Features (x1, x2, x3): Input variables that describe an observation.

3

イロト 不同 とくほ とくほ とう

- A dataset is a collection of examples used to train a model.
- Each example consists of:
 - Features (x1, x2, x3): Input variables that describe an observation.
 - Label (y): The expected output corresponding to the input.

3

- A dataset is a collection of examples used to train a model.
- Each example consists of:
 - Features (x1, x2, x3): Input variables that describe an observation.
 - Label (y): The expected output corresponding to the input.
- Example: Predicting student exam scores based on study hours, sleep hours, and practice tests.

- A dataset is a collection of examples used to train a model.
- Each example consists of:
 - Features (x1, x2, x3): Input variables that describe an observation.
 - Label (y): The expected output corresponding to the input.
- Example: Predicting student exam scores based on study hours, sleep hours, and practice tests.

Study Hours (x1)	Sleep Hours $(x2)$	Practice Tests (x3)	Exam Score (y)
1	6	1	45
2	7	2	50
3	5	1	55
4	6	3	65
5	8	2	70
6	5	4	75
7	7	3	85
8	6	4	90
4	6	3	What

• The goal of supervised learning is to find a function g(x) that predicts y.

3

イロト 不同 とくほ とくほ とう

- The goal of supervised learning is to find a function g(x) that predicts y.
- Given the dataset:

$$y=f(x_1,x_2,x_3)$$

• This is the same as:

ExamScore = *f*(*StudyHours*, *SleepHours*, *PracticeTests*)

(日) (周) (見) (見) (見)

- The goal of supervised learning is to find a function g(x) that predicts y.
- Given the dataset:

$$y=f(x_1,x_2,x_3)$$

• This is the same as:

• A realistic hypothesis function:

$$y = 10x_1 + 5x_2 + 3x_3 + 20$$

3

イロト 不同 とくほ とくほ とう

- The goal of supervised learning is to find a function g(x) that predicts y.
- Given the dataset:

$$y = f(x_1, x_2, x_3)$$

• This is the same as:

• A realistic hypothesis function:

$$y = 10x_1 + 5x_2 + 3x_3 + 20$$

• This is the same as:

ExamScore = 10 * *StudyHours* + 5 * *SleepHours* + 3 * *SleepHours* + *Bias*

- The goal of supervised learning is to find a function g(x) that predicts y.
- Given the dataset:

$$y = f(x_1, x_2, x_3)$$

• This is the same as:

• A realistic hypothesis function:

$$y = 10x_1 + 5x_2 + 3x_3 + 20$$

• This is the same as:

ExamScore = 10 * StudyHours + 5 * SleepHours + 3 * SleepHours + Bias

• Exam score calculation using unseen data (4, 6, 3):

- The goal of supervised learning is to find a function g(x) that predicts y.
- Given the dataset:

$$y = f(x_1, x_2, x_3)$$

• This is the same as:

• A realistic hypothesis function:

$$y = 10x_1 + 5x_2 + 3x_3 + 20$$

• This is the same as:

ExamScore = 10 * StudyHours + 5 * SleepHours + 3 * SleepHours + Bias

• Exam score calculation using unseen data (4, 6, 3):

$$y = 10(4) + 5(6) + 3(3) + 20 = 40 + 30 + 9 + 20 = 99$$

- The goal of supervised learning is to find a function g(x) that predicts y.
- Given the dataset:

$$y = f(x_1, x_2, x_3)$$

• This is the same as:

• A realistic hypothesis function:

$$y = 10x_1 + 5x_2 + 3x_3 + 20$$

• This is the same as:

ExamScore = 10 * StudyHours + 5 * SleepHours + 3 * SleepHours + Bias

• Exam score calculation using unseen data (4, 6, 3):

$$y = 10(4) + 5(6) + 3(3) + 20 = 40 + 30 + 9 + 20 = 99$$

• The model has learned a pattern from the data and makes predictions accordingly.

 $\bullet\,$ Given a set of N training examples:

$$\{(x_1, y_1), ..., (x_N, y_N)\}$$

where x_i is the feature vector of the *i*-th example and y_i is its corresponding label.

э.

 $\bullet\,$ Given a set of N training examples:

$$\{(x_1, y_1), ..., (x_N, y_N)\}$$

where x_i is the feature vector of the *i*-th example and y_i is its corresponding label.

• A learning algorithm seeks a function:

 $g:X \to Y$

where X is the input space and Y is the output space.

(日) (周) (見) (見) (見)

 $\bullet\,$ Given a set of N training examples:

$$\{(x_1, y_1), ..., (x_N, y_N)\}$$

where x_i is the feature vector of the *i*-th example and y_i is its corresponding label.

• A learning algorithm seeks a function:

 $g:X \to Y$

where X is the input space and Y is the output space.

• The function g is part of a hypothesis space G.

 $\bullet\,$ Given a set of N training examples:

$$\{(x_1, y_1), ..., (x_N, y_N)\}$$

where x_i is the feature vector of the *i*-th example and y_i is its corresponding label.

• A learning algorithm seeks a function:

$$g:X \to Y$$

where X is the input space and Y is the output space.

- The function g is part of a hypothesis space G.
- We often define g using a scoring function $f : X \times Y \to \mathbb{R}$ such that:

$$g(x) = \arg \max_{y} f(x, y)$$

 $\bullet\,$ Given a set of N training examples:

$$\{(x_1, y_1), ..., (x_N, y_N)\}$$

where x_i is the feature vector of the *i*-th example and y_i is its corresponding label.

• A learning algorithm seeks a function:

$$g:X \to Y$$

where X is the input space and Y is the output space.

- The function g is part of a hypothesis space G.
- We often define g using a scoring function $f : X \times Y \to \mathbb{R}$ such that:

$$g(x) = \arg \max_{y} f(x, y)$$

 $\bullet\,$ The goal is to find the best function g that minimizes a loss function.

• Supervised learning learns from labeled data.

- Supervised learning learns from labeled data.
- It can be used for classification (categorical output) and regression (numerical output).

- Supervised learning learns from labeled data.
- It can be used for classification (categorical output) and regression (numerical output).
- Common algorithms include Linear Regression, Decision Trees, and Neural Networks.

- Supervised learning learns from labeled data.
- It can be used for classification (categorical output) and regression (numerical output).
- Common algorithms include Linear Regression, Decision Trees, and Neural Networks.
- It is used in email filtering, medical diagnosis, price prediction, and many more applications.

• Bernd Klein, Python and Machine Learning.

E nar

イロト 不同 とくほ とくほ とう

- Bernd Klein, Python and Machine Learning.
- Eric Eaton, Introduction to Machine Learning.

∃ 9900

- Bernd Klein, Python and Machine Learning.
- Eric Eaton, Introduction to Machine Learning.
- Andreas Müller Sarah Guido, Introduction to Machine Learning with Python.

∃ \0<</p>\0

- Bernd Klein, Python and Machine Learning.
- Eric Eaton, Introduction to Machine Learning.
- Andreas Müller Sarah Guido, Introduction to Machine Learning with Python.
- Giuseppe Bonaccorso, Machine Learning Algorithms.

E nac

- Bernd Klein, Python and Machine Learning.
- Eric Eaton, Introduction to Machine Learning.
- Andreas Müller Sarah Guido, Introduction to Machine Learning with Python.
- Giuseppe Bonaccorso, Machine Learning Algorithms.
- Uppsala University, Supervised Machine Learning Lecture Notes.

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э.

イロト イヨト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

э

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

A D > A B > A B > A B >

Thank You!