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Question 1

Suppose X1,X2, . . . is an i.i.d. sequence of random variables with common variance σ2 > 0.

Define:

Yn =
1

n

n∑
i=1

X2i−1, Zn =
1

n

n∑
i=1

X2i

The asymptotic distribution (as n → ∞) of
√
n(Yn − Zn) is:

(a) N(0, 1)

(b) N(0, σ2)

(c) N(0, 2σ2)

(d) Degenerate at 0
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Central Limit Theorem (CLT)

The Central Limit Theorem (CLT) states that for a sufficiently large sample size n, the distribution of
the sample mean approaches a normal distribution, regardless of the original population distribution.

Let X1,X2, . . . ,Xn be i.i.d. random variables with mean µ and variance σ2.

The sample mean is:

X̄n =
1

n

n∑
i=1

Xi

CLT states:
X̄n − µ

σ/
√
n

d−→ N(0, 1)
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Solution for Question 1

We define:

Yn =
1

n

n∑
i=1

X2i−1, Zn =
1

n

n∑
i=1

X2i

The expectations of these sample means are:

E [Yn] = E [Zn] = E [X ]

Their variances are:

Var(Yn) =
σ2

n
, Var(Zn) =

σ2

n
Since Yn and Zn are independent, their difference has variance:

Var(Yn − Zn) = Var(Yn) +Var(Zn) =
σ2

n
+

σ2

n
=

2σ2

n

Multiplying by
√
n, we get:

Var(
√
n(Yn − Zn)) = 2σ2

By the Central Limit Theorem: √
n(Yn − Zn)

d−→ N(0, 2σ2)

Thus, the correct answer is (c) N(0, 2σ2).
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Question 54

Let X1,X2, . . . ,Xn be i.i.d. observations from:

Xi ∼ N(0, σ2), 0 < σ2 < ∞

Find the Uniformly Minimum Variance Unbiased Estimator (UMVUE) for σ2.

(a) 1
n

∑n
i=1 X

2
i

(b) 1
n−1

∑n
i=1 X

2
i

(c) 1
n

∑n
i=1(Xi − X̄ )2

(d) 1
n−1

∑n
i=1(Xi − X̄ )2
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Solution for Question

The sample variance is:

S2 =
1

n

n∑
i=1

X 2
i

Expectation:

E [S2] =
n − 1

n
σ2

S2 is a biased estimator for σ2.

To correct this bias, we use:

σ̂2 =
n

n − 1
S2 =

1

n − 1

n∑
i=1

X 2
i
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