Problems Using Both Addition and Multiplicative Laws Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

ъ

< ロ > < 同 > < 回 > < 回 >

• The addition law of probability states:

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• The addition law of probability states:

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• The multiplicative law of probability for independent events states:

 $P(A \cap B) = P(A) \cdot P(B)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• The addition law of probability states:

 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

• The multiplicative law of probability for independent events states:

 $P(A \cap B) = P(A) \cdot P(B)$

• These laws are often used together to solve complex probability problems.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Problem:

• A husband and wife appear in an interview for two vacancies for the same post.

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.

Bindeshwar Singh Kushwaha (PostNetwork Academy)

• At least one is selected.

3

イロト 人間 ト イヨト イヨト

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.
 - At least one is selected.
- Solution:

3

イロト イヨト イヨト イヨト

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.
 - At least one is selected.
- Solution:
- Let A: Husband is selected, B: Wife is selected.

3

イロト イヨト イヨト --

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.
 - At least one is selected.
- Solution:
- Let A: Husband is selected, B: Wife is selected.
- Probability that both are selected:

$$P(A \cap B) = P(A) \cdot P(B) = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{25}$$

3

イロト 人間 ト イヨト イヨト

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.
 - At least one is selected.
- Solution:
- Let A: Husband is selected, B: Wife is selected.
- Probability that both are selected:

$$P(A \cap B) = P(A) \cdot P(B) = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{25}$$

• Probability that at least one is selected:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3

イロト 不得 トイヨト イヨト

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.
 - At least one is selected.
- Solution:
- Let A: Husband is selected, B: Wife is selected.
- Probability that both are selected:

$$P(A \cap B) = P(A) \cdot P(B) = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{25}$$

• Probability that at least one is selected:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Substitute values:

$$P(A \cup B) = \frac{2}{5} + \frac{1}{5} - \frac{2}{25} = \frac{10}{25} + \frac{5}{25} - \frac{2}{25} = \frac{13}{25}$$

3

イロト 不得 トイヨト イヨト

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.
 - At least one is selected.
- Solution:
- Let A: Husband is selected, B: Wife is selected.
- Probability that both are selected:

$$P(A \cap B) = P(A) \cdot P(B) = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{25}$$

• Probability that at least one is selected:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Substitute values:

$$P(A \cup B) = \frac{2}{5} + \frac{1}{5} - \frac{2}{25} = \frac{10}{25} + \frac{5}{25} - \frac{2}{25} = \frac{13}{25}$$

• Answer:

3

イロト 不得 トイヨト イヨト

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.
 - At least one is selected.
- Solution:
- Let A: Husband is selected, B: Wife is selected.
- Probability that both are selected:

$$P(A \cap B) = P(A) \cdot P(B) = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{25}$$

• Probability that at least one is selected:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Substitute values:

$$P(A \cup B) = \frac{2}{5} + \frac{1}{5} - \frac{2}{25} = \frac{10}{25} + \frac{5}{25} - \frac{2}{25} = \frac{13}{25}$$

- Answer:
- Probability that both are selected: $\frac{2}{25}$.

3

イロト 不同 トイヨト イヨト

Problem:

- A husband and wife appear in an interview for two vacancies for the same post.
- The probability of the husband's selection is $\frac{2}{5}$.
- The probability of the wife's selection is $\frac{1}{5}$.
- Find the probability that:
 - Both are selected.
 - At least one is selected.
- Solution:
- Let A: Husband is selected, B: Wife is selected.
- Probability that both are selected:

$$P(A \cap B) = P(A) \cdot P(B) = \frac{2}{5} \cdot \frac{1}{5} = \frac{2}{25}$$

• Probability that at least one is selected:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Substitute values:

$$P(A \cup B) = \frac{2}{5} + \frac{1}{5} - \frac{2}{25} = \frac{10}{25} + \frac{5}{25} - \frac{2}{25} = \frac{13}{25}$$

- Answer:
- Probability that both are selected: $\frac{2}{25}$.
- Probability that at least one is selected: $\frac{13}{25}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

• Problem:

• Problem:

• A person X speaks the truth in 80

• Problem:

- A person X speaks the truth in 80
- Another person Y speaks the truth in 90

• Problem:

- A person X speaks the truth in 80
- ${\small \bullet}~$ Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Problem:

- A person X speaks the truth in 80
- ${\small \bullet}~$ Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

• Problem:

- A person X speaks the truth in 80
- Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

• Let T_X : X speaks the truth, F_X : X lies.

• Problem:

- A person X speaks the truth in 80
- Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- Let T_Y : Y speaks the truth, F_Y : Y lies.

3

イロト 不同 トイヨト イヨト

• Problem:

- A person X speaks the truth in 80
- Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- Let T_Y : Y speaks the truth, F_Y : Y lies.
- The events where they contradict each other are:

3

イロト 不同 トイヨト イヨト

• Problem:

- A person X speaks the truth in 80
- ${\small \bullet}~$ Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- Let T_Y : Y speaks the truth, F_Y : Y lies.
- The events where they contradict each other are:
 - X speaks the truth and Y lies: $P(T_X \cap F_Y)$.

イロン 不同 とくほう 不良 とうほう

• Problem:

- A person X speaks the truth in 80
- ${\small \bullet}~$ Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- $\bullet~$ Let $T_Y\colon Y$ speaks the truth, $F_Y\colon Y$ lies.
- The events where they contradict each other are:
 - X speaks the truth and Y lies: $P(T_X \cap F_Y)$.
 - X lies and Y speaks the truth: $P(F_X \cap T_Y)$.

イロン 不同 とくほう 不良 とうほう

• Problem:

- A person X speaks the truth in 80
- ${\small \bullet}~$ Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- $\bullet~$ Let $T_Y\colon Y$ speaks the truth, $F_Y\colon Y$ lies.
- The events where they contradict each other are:
 - X speaks the truth and Y lies: $P(T_X \cap F_Y)$.
 - X lies and Y speaks the truth: $P(F_X \cap T_Y)$.
- Calculate probabilities:

$$P(T_X) = 0.8, P(F_X) = 0.2, P(T_Y) = 0.9, P(F_Y) = 0.1$$

• Problem:

- A person X speaks the truth in 80
- ${\small \bullet}~$ Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- $\bullet~$ Let $T_Y\colon Y$ speaks the truth, $F_Y\colon Y$ lies.
- The events where they contradict each other are:
 - X speaks the truth and Y lies: $P(T_X \cap F_Y)$.
 - X lies and Y speaks the truth: $P(F_X \cap T_Y)$.
- Calculate probabilities:

$$P(T_X) = 0.8, \quad P(F_X) = 0.2, \quad P(T_Y) = 0.9, \quad P(F_Y) = 0.1$$

• $P(T_X \cap F_Y) = P(T_X) \cdot P(F_Y) = 0.8 \cdot 0.1 = 0.08.$

• Problem:

- A person X speaks the truth in 80
- ${\small \bullet}~$ Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- $\bullet~$ Let $T_Y\colon Y$ speaks the truth, $F_Y\colon Y$ lies.
- The events where they contradict each other are:
 - X speaks the truth and Y lies: $P(T_X \cap F_Y)$.
 - X lies and Y speaks the truth: $P(F_X \cap T_Y)$.
- Calculate probabilities:

$$P(T_X) = 0.8, P(F_X) = 0.2, P(T_Y) = 0.9, P(F_Y) = 0.1$$

- $P(T_X \cap F_Y) = P(T_X) \cdot P(F_Y) = 0.8 \cdot 0.1 = 0.08.$
- $P(F_X \cap T_Y) = P(F_X) \cdot P(T_Y) = 0.2 \cdot 0.9 = 0.18.$

Problem.

- A person X speaks the truth in 80 ۲
- Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact. ۲

Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- Let T_Y : Y speaks the truth, F_Y : Y lies.
- The events where they contradict each other are: ۲
 - X speaks the truth and Y lies: $P(T_X \cap F_Y)$.
 - X lies and Y speaks the truth: $P(F_X \cap T_Y)$.
- Calculate probabilities:

$$P(T_X) = 0.8, P(F_X) = 0.2, P(T_Y) = 0.9, P(F_Y) = 0.1$$

- $P(T_X \cap F_Y) = P(T_X) \cdot P(F_Y) = 0.8 \cdot 0.1 = 0.08.$
- $P(F_X \cap T_Y) = P(F_X) \cdot P(T_Y) = 0.2 \cdot 0.9 = 0.18.$
- Total probability of contradiction:

$$P(T_X \cap F_Y) + P(F_X \cap T_Y) = 0.08 + 0.18 = 0.26$$

• Problem:

- A person X speaks the truth in 80
- Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- $\bullet~$ Let $T_X\colon X$ speaks the truth, $F_X\colon X$ lies.
- $\bullet~$ Let $T_Y\colon Y$ speaks the truth, $F_Y\colon Y$ lies.
- The events where they contradict each other are:
 - X speaks the truth and Y lies: $P(T_X \cap F_Y)$.
 - X lies and Y speaks the truth: $P(F_X \cap T_Y)$.
- Calculate probabilities:

$$P(T_X) = 0.8, P(F_X) = 0.2, P(T_Y) = 0.9, P(F_Y) = 0.1$$

- $P(T_X \cap F_Y) = P(T_X) \cdot P(F_Y) = 0.8 \cdot 0.1 = 0.08.$
- $P(F_X \cap T_Y) = P(F_X) \cdot P(T_Y) = 0.2 \cdot 0.9 = 0.18.$
- Total probability of contradiction:

$$P(T_X \cap F_Y) + P(F_X \cap T_Y) = 0.08 + 0.18 = 0.26$$

• Answer:

• Problem:

- A person X speaks the truth in 80
- ${\small \bullet}~$ Another person Y speaks the truth in 90
- Find the probability that they contradict each other when stating the same fact.

• Solution:

- Let T_X : X speaks the truth, F_X : X lies.
- $\bullet~$ Let $T_Y\colon Y$ speaks the truth, $F_Y\colon Y$ lies.
- The events where they contradict each other are:
 - X speaks the truth and Y lies: $P(T_X \cap F_Y)$.
 - X lies and Y speaks the truth: $P(F_X \cap T_Y)$.
- Calculate probabilities:

$$P(T_X) = 0.8, P(F_X) = 0.2, P(T_Y) = 0.9, P(F_Y) = 0.1$$

- $P(T_X \cap F_Y) = P(T_X) \cdot P(F_Y) = 0.8 \cdot 0.1 = 0.08.$
- $P(F_X \cap T_Y) = P(F_X) \cdot P(T_Y) = 0.2 \cdot 0.9 = 0.18.$
- Total probability of contradiction:

$$P(T_X \cap F_Y) + P(F_X \cap T_Y) = 0.08 + 0.18 = 0.26$$

• Answer:

 ${\small \bullet}~$ The probability that they contradict each other is 0.26.

www.postnetwork.co

・ロト・日本・日本・日本・日本・日本

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

э

イロト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

イロト イヨト イヨト

Thank You!