Law of Total Probability and Examples Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

Bindeshwar Singh Kushwaha (PostNetwork Academy)

ъ

イロト イヨト イヨト

A set of events E_1, E_2, E_3, E_4 is said to represent a partition of the sample space S if: • $E_i \cap E_j = \emptyset$ for $i \neq j$, meaning they are pairwise disjoint.

3

A set of events E_1, E_2, E_3, E_4 is said to represent a partition of the sample space S if:

- $E_i \cap E_j = \emptyset$ for $i \neq j$, meaning they are pairwise disjoint.
- $E_1 \cup E_2 \cup E_3 \cup E_4 = S$, meaning they cover the entire sample space.

3

A set of events E_1, E_2, E_3, E_4 is said to represent a partition of the sample space S if:

- $E_i \cap E_j = \emptyset$ for $i \neq j$, meaning they are pairwise disjoint.
- $E_1 \cup E_2 \cup E_3 \cup E_4 = S$, meaning they cover the entire sample space.
- $P(E_i) > 0$ for all i = 1, 2, 3, 4, meaning each has a nonzero probability.

3

ヘロト 人間 トイヨト 人間ト

A set of events E_1, E_2, E_3, E_4 is said to represent a partition of the sample space S if:

- $E_i \cap E_j = \emptyset$ for $i \neq j$, meaning they are pairwise disjoint.
- $E_1 \cup E_2 \cup E_3 \cup E_4 = S$, meaning they cover the entire sample space.
- $P(E_i) > 0$ for all i = 1, 2, 3, 4, meaning each has a nonzero probability.
- Example:
- Any nonempty event E and its complement E^\prime form a partition since:

 $E \cap E' = \emptyset, \quad E \cup E' = S$

3

3

3

э.

3

э.

▷ 클 ∽ < . 3/15

3

3

э.

イロト 不同 トイヨト イヨト

Let E_1, E_2, E_3, E_4 be a partition of the sample space S, where $P(E_i) > 0$ for all i, and let A be any event in S.

(ロ) (同) (三) (三) (三) (0) (○)

Law of Total Probability

Then, the law of total probability states that:

3

イロト 不同 トイヨト イヨト

Law of Total Probability

$$P(A) = \sum_{i=1}^{4} P(A|E_i)P(E_i)$$

Bindeshwar Singh Kushwaha (PostNetwork Academy)

4 / 15

3

Law of Total Probability

The steps to derive this result are:

• The events E_1, E_2, E_3, E_4 form a partition of S, meaning they are mutually exclusive and exhaustive.

- The events E_1, E_2, E_3, E_4 form a partition of S, meaning they are mutually exclusive and exhaustive.
- Since one of these events must occur, we express A as:

 $A = (A \cap E_1) \cup (A \cap E_2) \cup (A \cap E_3) \cup (A \cap E_4)$

- The events E_1, E_2, E_3, E_4 form a partition of S, meaning they are mutually exclusive and exhaustive.
- Since one of these events must occur, we express A as:

$$A = (A \cap E_1) \cup (A \cap E_2) \cup (A \cap E_3) \cup (A \cap E_4)$$

• By the addition rule for probabilities:

 $P(A) = P(A \cap E_1) + P(A \cap E_2) + P(A \cap E_3) + P(A \cap E_4)$

- The events E_1, E_2, E_3, E_4 form a partition of S, meaning they are mutually exclusive and exhaustive.
- Since one of these events must occur, we express A as:

$$A = (A \cap E_1) \cup (A \cap E_2) \cup (A \cap E_3) \cup (A \cap E_4)$$

• By the addition rule for probabilities:

 $P(A) = P(A \cap E_1) + P(A \cap E_2) + P(A \cap E_3) + P(A \cap E_4)$

• Using the definition of conditional probability, $P(A \cap E_i) = P(A|E_i)P(E_i)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The events E_1, E_2, E_3, E_4 form a partition of S, meaning they are mutually exclusive and exhaustive.

• Since one of these events must occur, we express A as:

$$A = (A \cap E_1) \cup (A \cap E_2) \cup (A \cap E_3) \cup (A \cap E_4)$$

• By the addition rule for probabilities:

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + P(A \cap E_3) + P(A \cap E_4)$$

- Using the definition of conditional probability, $P(A \cap E_i) = P(A|E_i)P(E_i)$.
- Substituting this into the equation gives:

$$P(A) = \sum_{i=1}^{4} P(A|E_i)P(E_i)$$

・ロト ・ 回 ト ・ ヨ ト ・ ヨ ・ つ へ つ

э.

イロト 不同 トイヨト イヨト

э.

3

3

3

э.

3

э.

э.

イロト 不同 とくほ とくほ とう

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Question:

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

3

イロト 不同 トイヨト イヨト

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

• Define events:

E nac

イロト 不同 とくほ とくほ とう

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

- Define events:
 - E_1 : Selecting the first bag, $P(E_1) = 1/2$

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

- Define events:
 - E_1 : Selecting the first bag, $P(E_1) = 1/2$
 - E_2 : Selecting the second bag, $P(E_2) = 1/2$

<ロ> <同> <同> < 三> < 三> < 三> < 三</p>

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

- Define events:
 - E_1 : Selecting the first bag, $P(E_1) = 1/2$
 - E_2 : Selecting the second bag, $P(E_2) = 1/2$
- Conditional probabilities:

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

- Define events:
 - E_1 : Selecting the first bag, $P(E_1) = 1/2$
 - E_2 : Selecting the second bag, $P(E_2) = 1/2$
- Conditional probabilities:
 - $P(R|E_1) = 5/11, P(W|E_1) = 6/11$

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

- Define events:
 - E_1 : Selecting the first bag, $P(E_1) = 1/2$
 - E_2 : Selecting the second bag, $P(E_2) = 1/2$
- Conditional probabilities:
 - $P(R|E_1) = 5/11, P(W|E_1) = 6/11$
 - $P(R|E_2) = 3/7, P(W|E_2) = 4/7$

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

- Define events:
 - E_1 : Selecting the first bag, $P(E_1) = 1/2$
 - E_2 : Selecting the second bag, $P(E_2) = 1/2$
- Conditional probabilities:
 - $P(R|E_1) = 5/11, P(W|E_1) = 6/11$
 - $P(R|E_2) = 3/7, P(W|E_2) = 4/7$
- Using the law of total probability:

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

- Define events:
 - E_1 : Selecting the first bag, $P(E_1) = 1/2$
 - E_2 : Selecting the second bag, $P(E_2) = 1/2$
- Conditional probabilities:
 - $P(R|E_1) = 5/11, P(W|E_1) = 6/11$ • $P(P|E_1) = 2/7, P(W|E_1) = 4/7$
 - $P(R|E_2) = 3/7, P(W|E_2) = 4/7$
- Using the law of total probability:
 - $P(R) = (1/2 \times 5/11) + (1/2 \times 3/7) = 34/77$

Question (Reiterated):

- There are two bags:
 - First bag: 5 red, 6 white balls
 - Second bag: 3 red, 4 white balls
- One bag is selected at random, and a ball is drawn.
- Find the probability that the ball is:
 - (i) Red
 - (ii) White

Solution:

- Define events:
 - E_1 : Selecting the first bag, $P(E_1) = 1/2$
 - E_2 : Selecting the second bag, $P(E_2) = 1/2$
- Conditional probabilities:
 - $P(R|E_1) = 5/11, P(W|E_1) = 6/11$
 - $P(R|E_2) = 3/7, P(W|E_2) = 4/7$
- Using the law of total probability:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Question:

- A factory has three machines producing outputs:
 - Machine X: 3000 units (1% defective)
 - Machine Y: 2500 units (1.2% defective)
 - Machine Z: 4500 units (2% defective)
- An item is drawn at random.
- Find the probability that it is defective.

э.

イロト 不得下 イヨト イヨト

Question (Reiterated):

- A factory has three machines producing outputs:
 - Machine X: 3000 units (1% defective)
 - Machine Y: 2500 units (1.2% defective)
 - Machine Z: 4500 units (2% defective)
- An item is drawn at random.
- Find the probability that it is defective.

Solution:

• Define events:

э.

イロト イヨト イヨト イヨト

Question (Reiterated):

- A factory has three machines producing outputs:
 - Machine X: 3000 units (1% defective)
 - Machine Y: 2500 units (1.2% defective)
 - Machine Z: 4500 units (2% defective)
- An item is drawn at random.
- Find the probability that it is defective.

Solution:

• Define events:

• $P(E_X) = 3000/10000$, $P(E_Y) = 2500/10000$, $P(E_Z) = 4500/10000$

イロト 不得 トイヨト イヨト ニヨー

Question (Reiterated):

- A factory has three machines producing outputs:
 - Machine X: 3000 units (1% defective)
 - Machine Y: 2500 units (1.2% defective)
 - Machine Z: 4500 units (2% defective)
- An item is drawn at random.
- Find the probability that it is defective.

Solution:

• Define events:

• $P(E_X) = 3000/10000$, $P(E_Y) = 2500/10000$, $P(E_Z) = 4500/10000$

• Conditional probabilities:

イロト 不得 トイヨト イヨト ニヨー

Question (Reiterated):

- A factory has three machines producing outputs:
 - Machine X: 3000 units (1% defective)
 - Machine Y: 2500 units (1.2% defective)
 - Machine Z: 4500 units (2% defective)
- An item is drawn at random.
- Find the probability that it is defective.

Solution:

• Define events:

•
$$P(E_X) = 3000/10000, P(E_Y) = 2500/10000, P(E_Z) = 4500/10000$$

- Conditional probabilities:
 - $P(D|E_X) = 0.01$, $P(D|E_Y) = 0.012$, $P(D|E_Z) = 0.02$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Question (Reiterated):

- A factory has three machines producing outputs:
 - Machine X: 3000 units (1% defective)
 - Machine Y: 2500 units (1.2% defective)
 - Machine Z: 4500 units (2% defective)
- An item is drawn at random.
- Find the probability that it is defective.

Solution:

• Define events:

• $P(E_X) = 3000/10000$, $P(E_Y) = 2500/10000$, $P(E_Z) = 4500/10000$

- Conditional probabilities:
 - $P(D|E_X) = 0.01, P(D|E_Y) = 0.012, P(D|E_Z) = 0.02$
- Using the law of total probability:

Question (Reiterated):

- A factory has three machines producing outputs:
 - Machine X: 3000 units (1% defective)
 - Machine Y: 2500 units (1.2% defective)
 - Machine Z: 4500 units (2% defective)
- An item is drawn at random.
- Find the probability that it is defective.

Solution:

• Define events:

• $P(E_X) = 3000/10000$, $P(E_Y) = 2500/10000$, $P(E_Z) = 4500/10000$

- Conditional probabilities:
 - $P(D|E_X) = 0.01$, $P(D|E_Y) = 0.012$, $P(D|E_Z) = 0.02$
- Using the law of total probability:

• $P(D) = (0.3 \times 0.01) + (0.25 \times 0.012) + (0.45 \times 0.02) = 0.015$

Question:

- There are two coins:
 - One unbiased coin
 - One two-headed coin
- A coin is selected at random and tossed.
- Find the probability of getting a head.

э.

イロト 不同 トイヨト イヨト

Question (Reiterated):

- There are two coins:
 - One unbiased coin
 - One two-headed coin
- A coin is selected at random and tossed.
- Find the probability of getting a head.

Solution:

• Define events:

3

イロト 不同 トイヨト イヨト

Question (Reiterated):

- There are two coins:
 - One unbiased coin
 - One two-headed coin
- A coin is selected at random and tossed.
- Find the probability of getting a head.

Solution:

- Define events:
 - E_1 : Selecting unbiased coin, $P(E_1) = 1/2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Question (Reiterated):

- There are two coins:
 - One unbiased coin
 - One two-headed coin
- A coin is selected at random and tossed.
- Find the probability of getting a head.

Solution:

- Define events:
 - E_1 : Selecting unbiased coin, $P(E_1) = 1/2$
 - E_2 : Selecting two-headed coin, $P(E_2) = 1/2$

イロト 不得 トイヨト イヨト ニヨー

Question (Reiterated):

- There are two coins:
 - One unbiased coin
 - One two-headed coin
- A coin is selected at random and tossed.
- Find the probability of getting a head.

Solution:

- Define events:
 - E_1 : Selecting unbiased coin, $P(E_1) = 1/2$
 - E_2 : Selecting two-headed coin, $P(E_2) = 1/2$
- Conditional probabilities:

イロト 不得 トイヨト イヨト ニヨー

Question (Reiterated):

- There are two coins:
 - One unbiased coin
 - One two-headed coin
- A coin is selected at random and tossed.
- Find the probability of getting a head.

Solution:

- Define events:
 - E_1 : Selecting unbiased coin, $P(E_1) = 1/2$
 - E_2 : Selecting two-headed coin, $P(E_2) = 1/2$
- Conditional probabilities:
 - $P(H|E_1) = 1/2, P(H|E_2) = 1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Question (Reiterated):

- There are two coins:
 - One unbiased coin
 - One two-headed coin
- A coin is selected at random and tossed.
- Find the probability of getting a head.

Solution:

- Define events:
 - E_1 : Selecting unbiased coin, $P(E_1) = 1/2$
 - E_2 : Selecting two-headed coin, $P(E_2) = 1/2$
- Conditional probabilities:
 - $P(H|E_1) = 1/2, P(H|E_2) = 1$
- Using law of total probability:

Question (Reiterated):

- There are two coins:
 - One unbiased coin
 - One two-headed coin
- A coin is selected at random and tossed.
- Find the probability of getting a head.

Solution:

- Define events:
 - E_1 : Selecting unbiased coin, $P(E_1) = 1/2$
 - E_2 : Selecting two-headed coin, $P(E_2) = 1/2$
- Conditional probabilities:
 - $P(H|E_1) = 1/2, P(H|E_2) = 1$
- Using law of total probability:
 - $P(H) = (1/2 \times 1/2) + (1/2 \times 1) = 3/4$

Example 4: Probability of Introducing Co-Education

Question:

- Three persons are considered for a principal position, with selection probabilities:
 - Person 1: 4/9
 - Person 2: 3/9
 - Person 3: 2/9
- Probability of introducing co-education:
 - \bullet Person 1: 0.2
 - Person 2: 0.3
 - Person 3: 0.5
- Find the probability that co-education is introduced in the college.

イロト 不得 トイヨト イヨト ニヨー

Question (Reiterated):

- Three persons are considered for a principal position, with selection probabilities:
 - Person 1: 4/9
 - Person 2: 3/9
 - Person 3: 2/9
- Probability of introducing co-education:
 - Person 1: 0.2
 - Person 2: 0.3
 - \bullet Person 3: 0.5
- Find the probability that co-education is introduced in the college.

Solution:

• Using law of total probability:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

Question (Reiterated):

- Three persons are considered for a principal position, with selection probabilities:
 - Person 1: 4/9
 - Person 2: 3/9
 - Person 3: 2/9
- Probability of introducing co-education:
 - Person 1: 0.2
 - Person 2: 0.3
 - Person 3: 0.5
- Find the probability that co-education is introduced in the college.

Solution:

- Using law of total probability:
 - $P(A) = (4/9 \times 0.2) + (3/9 \times 0.3) + (2/9 \times 0.5) = 0.3$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э.

イロト 不同 トイヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

э

イロト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

э.

イロト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

イロト イヨト イヨト
Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで