Relative Frequency Approach in Probability Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

э.

イロト イヨト イヨト

So, in general, if X is a variable having the values x_1, x_2, \ldots, x_n with frequencies f_1, f_2, \ldots, f_n , respectively, then:

$$\frac{f_1}{\sum f_i}, \frac{f_2}{\sum f_i}, \ldots, \frac{f_n}{\sum f_i}$$

are the relative frequencies of x_1, x_2, \ldots, x_n , respectively, and hence the probabilities of X taking the values x_1, x_2, \ldots, x_n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Age of Husband	15 - 25	25-35	35-45	45-55
Age of Wife				
10-20	6	3	0	0
20-30	3	16	10	0
30-40	0	10	15	7
40-50	0	0	7	10
50-60	0	0	4	5

Table: Age Distribution of 100 Couples

● Probability of wife's age 20 - 50:

$$P = \frac{3 + 16 + 10 + 0 + 0 + 0 + 10 + 15 + 7 + 0}{100} = 0.82$$

(ロ) (同) (三) (三) (三) (0) (○)

Age of Husband	15 - 25	25 - 35	35-45	45-55
Age of Wife				
10-20	6	3	0	0
20-30	3	16	10	0
30-40	0	10	15	7
40-50	0	0	7	10
50-60	0	0	4	5

Table: Age Distribution of 100 Couples

• Probability of wife's age 20 - 50:

$$P = \frac{3 + 16 + 10 + 0 + 0 + 0 + 10 + 15 + 7 + 0}{100} = 0.82$$

 \bullet Probability of wife's age 20-40 and husband's age 35-45:

$$P = \frac{10 + 15}{100} = 0.25$$

Example 2: Student Ages

Table: Age Distribution of 15 Students

Age (Years)	Frequency (f)	Relative Frequency $\left(\frac{f}{15}\right)$
14	2	2
15	1	15 15
16	2	22' 15
17	3	<u>3</u> 15
18	1	<u>1</u> 15
19	2	$\frac{2}{15}$
20	3	<u>3</u> 15
21	1	$\frac{1}{15}$

• Probability of age divisible by 3 (15, 18, 21):

$$P = \frac{1+1+1}{15} = 0.2$$

Example 2: Student Ages

Table: Age Distribution of 15 Students

Age (Years)	Frequency (f)	Relative Frequency $\left(\frac{f}{15}\right)$
14	2	2
15	1	17 15
16	2	22' 15
17	3	<u>3</u> 15
18	1	$\frac{1}{15}$
19	2	$\frac{2}{15}$
20	3	<u>3</u> 15
21	1	$\frac{1}{15}$

• Probability of age divisible by 3 (15, 18, 21):

$$P = \frac{1+1+1}{15} = 0.2$$

• Probability of age > 16 (17, 18, 19, 20, 21):

$$P = \frac{3+1+2+3+1}{15} = 0.6667$$

Example 2: Student Ages

Table: Age Distribution of 15 Students

Age (Years)	Frequency (f)	Relative Frequency $\left(\frac{f}{15}\right)$
14	2	2
15	1	15 15
16	2	22' 15
17	3	<u>3</u> 15
18	1	<u>1</u> 15
19	2	$\frac{2}{15}$
20	3	<u>3</u> 15
21	1	$\frac{1}{15}$

• Probability of age divisible by 3 (15, 18, 21):

$$P = \frac{1+1+1}{15} = 0.2$$

• Probability of age > 16 (17, 18, 19, 20, 21):

$$P = \frac{3+1+2+3+1}{15} = 0.6667$$

• Probability of age ≥ 18 :

$$P = \frac{1+2+3+1}{15} = 0.4667$$

Distance (km)	Frequency (f)	Relative Frequency $\left(\frac{f}{2000}\right)$
Less than 4000	20	20
4001-10000	100	<u>100</u> 2000
10001 - 20000	200	200 2000
20001-40000	1500	<u>1500</u> 2000
More than 40000	180	$\frac{180}{2000}$

Table: Distance Covered by Tyres (2000 Cases)

• Probability of $\geq 4001 \, \mathrm{km}$:

$$P = \frac{100 + 200 + 1500 + 180}{2000} = 0.99$$

Distance (km)	Frequency (f)	Relative Frequency $\left(\frac{f}{2000}\right)$
Less than 4000	20	20 2000
4001-10000	100	2000
10001-20000	200	200
20001-40000	1500	<u>1500</u> 2000
More than 40000	180	180 2000

Table: Distance Covered by Tyres (2000 Cases)

۲	Probability	\mathbf{of}	\geq	4001	km:
---	-------------	---------------	--------	------	-----

$$P = \frac{100 + 200 + 1500 + 180}{2000} = 0.99$$

• Probability of ≤ 20000 km:

$$P = \frac{20 + 100 + 200}{2000} = 0.16$$

(ロ) (同) (三) (三) (三) (0) (○)

Distance (km)	Frequency (f)	Relative Frequency $\left(\frac{f}{2000}\right)$
Less than 4000	20	20
4001-10000	100	100 2000
10001 - 20000	200	200
20001-40000	1500	<u>1500</u> 2000
More than 40000	180	$\frac{180}{2000}$

Table: Distance Covered by Tyres (2000 Cases)

۲	Probability	\mathbf{of}	\geq	4001	km:
---	-------------	---------------	--------	------	-----

$$P = \frac{100 + 200 + 1500 + 180}{2000} = 0.99$$

• Probability of ≤ 20000 km:

$$P = \frac{20 + 100 + 200}{2000} = 0.16$$

• Probability of > 20000 km:

$$P = \frac{1500 + 180}{2000} = 0.84$$

(ロ) (同) (三) (三) (三) (0) (○)

Distance (km)	Frequency (f)	Relative Frequency $\left(\frac{f}{2000}\right)$
Less than 4000 4001-10000 10001-20000 20001-40000 More than 40000	$20 \\ 100 \\ 200 \\ 1500 \\ 180$	20 2000 2000 2000 2000 2000 2000 3000 3

Table: Distance Covered by Tyres (2000 Cases)

۲	Probability	of	\geq	4001	km:
---	-------------	----	--------	------	-----

$$P = \frac{100 + 200 + 1500 + 180}{2000} = 0.99$$

• Probability of ≤ 20000 km:

$$P = \frac{20 + 100 + 200}{2000} = 0.16$$

• Probability of > 20000 km:

$$P = \frac{1500 + 180}{2000} = 0.84$$

• Probability of 10000 - 40000 km:

$$P = \frac{200 + 1500}{2000} = 0.85$$

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

э.

イロト 不同 とくほ とくほと

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

э

イロト 不同 トイヨト イヨト

Thank You!