Fundamental Principle of Counting Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

э.

イロト イヨト イヨト

• Statement: If one event can occur in m ways and another event can occur in n ways, then the two events together can occur in $m \times n$ ways.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Statement: If one event can occur in m ways and another event can occur in n ways, then the two events together can occur in $m \times n$ ways.
- This principle can be extended to multiple events. For example:

Total ways for 3 events = $m \times n \times p$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

- Statement: If one event can occur in m ways and another event can occur in n ways, then the two events together can occur in $m \times n$ ways.
- This principle can be extended to multiple events. For example:

Total ways for 3 events = $m \times n \times p$

• The principle is widely used in problems involving arrangements and selections.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

• Mohan has 3 pants (P_1, P_2, P_3) and 2 shirts (S_1, S_2) .

E nar

イロト イヨト イヨト イヨト

- Mohan has 3 pants (P_1, P_2, P_3) and 2 shirts (S_1, S_2) .
- For each pant, there are 2 choices of shirts.

3

イロト 不同 トイヨト イヨト

- Mohan has 3 pants (P_1, P_2, P_3) and 2 shirts (S_1, S_2) .
- For each pant, there are 2 choices of shirts.
- Total combinations:

 $3 \times 2 = 6$

3

イロト イヨト イヨト --

- Mohan has 3 pants (P_1, P_2, P_3) and 2 shirts (S_1, S_2) .
- For each pant, there are 2 choices of shirts.
- Total combinations:

 $3 \times 2 = 6$

• The combinations are:

 $P_1S_1, P_1S_2, P_2S_1, P_2S_2, P_3S_1, P_3S_2$

э.

A D > A D >

Diagram for Pants and Shirts

- Each pant (P_1, P_2, P_3) is connected to both shirts (S_1, S_2) .
- The arrows represent the possible pairings between pants and shirts.
- Total combinations:

$$3 \times 2 = 6$$

э.

< <p>Image: A matrix

★ Ξ ► ★ Ξ ►

Bindeshwar Singh Kushwaha (PostNetwork Academy)

E nar

イロト イヨト イヨト イヨト

- Sabnam has:
 - 2 school bags (B_1, B_2) ,

E nar

イロト 不同 トイヨト イヨト

- 2 school bags (B_1, B_2) ,
- 3 tiffin boxes (T_1, T_2, T_3) ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- 2 school bags (B_1, B_2) ,
- 3 tiffin boxes (T_1, T_2, T_3) ,
- 2 water bottles (W_1, W_2) .

- 2 school bags (B_1, B_2) ,
- 3 tiffin boxes (T_1, T_2, T_3) ,
- 2 water bottles (W_1, W_2) .

• For each school bag, there are 3 choices of tiffin boxes.

- 2 school bags (B_1, B_2) ,
- 3 tiffin boxes (T_1, T_2, T_3) ,
- 2 water bottles (W_1, W_2) .
- For each school bag, there are 3 choices of tiffin boxes.
- For each pair of school bag and tiffin box, there are 2 choices of water bottles.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つんで

- 2 school bags (B_1, B_2) ,
- 3 tiffin boxes (T_1, T_2, T_3) ,
- 2 water bottles (W_1, W_2) .
- For each school bag, there are 3 choices of tiffin boxes.
- For each pair of school bag and tiffin box, there are 2 choices of water bottles.
- Total combinations:

 $2\times 3\times 2=12$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つんで

• To form 4-letter words with "ROSE" (no repetition):

E nar

イロト イヨト イヨト イヨト

- To form 4-letter words with "ROSE" (no repetition):
 - First letter: 4 choices,

E nar

イロト 不同 とくほ とくほ とう

- To form 4-letter words with "ROSE" (no repetition):
 - First letter: 4 choices,
 - Second letter: 3 choices,

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ニヨーの��

- To form 4-letter words with "ROSE" (no repetition):
 - First letter: 4 choices,
 - Second letter: 3 choices,
 - Third letter: 2 choices,

<ロ> <同> <同> < 三> < 三> < 三> < 三</p>

• To form 4-letter words with "ROSE" (no repetition):

- First letter: 4 choices,
- Second letter: 3 choices,
- Third letter: 2 choices,
- Fourth letter: 1 choice.

<ロ> <同> <同> < 三> < 三> < 三> < 三</p>

- To form 4-letter words with "ROSE" (no repetition):
 - First letter: 4 choices,
 - Second letter: 3 choices,
 - Third letter: 2 choices,
 - Fourth letter: 1 choice.
- Total words:

$$4 \times 3 \times 2 \times 1 = 24$$

<ロ> <同> <同> < 三> < 三> < 三> < 三</p>

• If 4 flags of different colors are available:

(ロ) (同) (三) (三) (三) (0) (○)

- If 4 flags of different colors are available:
 - First flag: 4 choices,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- If 4 flags of different colors are available:
 - First flag: 4 choices,
 - Second flag: 3 choices (no repetition).

(ロ) (同) (三) (三) (三) (0) (○)

- If 4 flags of different colors are available:
 - First flag: 4 choices,
 - Second flag: 3 choices (no repetition).
- Total signals:

$$4 \times 3 = 12$$

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

э.

ヘロト 人間 トイヨト 人間ト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

э

イロト 不同 トイヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

イロト 不得 トイヨト イヨト

Thank You!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで