Axiomatic Approach to Probability Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

э.

イロト イヨト イヨト

Definition:

• Let S be a sample space for a random experiment.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Definition:

- Let S be a sample space for a random experiment.
- Let A be an event that is a subset of S.

= 990

イロト 不同 トイヨト イヨト

Definition:

- Let S be a sample space for a random experiment.
- Let A be an event that is a subset of S.
- P(A) is called a probability function if it satisfies the following axioms:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

• Non-Negativity: $P(A) \ge 0$ for all $A \subseteq S$.

E nar

イロト イヨト イヨト イヨト

- Non-Negativity: $P(A) \ge 0$ for all $A \subseteq S$.
- Normalization: P(S) = 1.

∃ <\0<</p>

イロト 不同 とくほ とくほ とう

- Non-Negativity: $P(A) \ge 0$ for all $A \subseteq S$.
- Normalization: P(S) = 1.
- Additivity: If A_1, A_2, \ldots are mutually disjoint events, then:

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• The probability of an impossible event is zero: $P(\emptyset) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- The probability of an impossible event is zero: $P(\emptyset) = 0$.
- $\bullet\,$ For any event A, the probability of its complement is:

$$P(A^c) = 1 - P(A).$$

- The probability of an impossible event is zero: $P(\emptyset) = 0$.
- \bullet For any event A, the probability of its complement is:

$$P(A^c) = 1 - P(A).$$

• If $A \subseteq B$, then $P(A) \leq P(B)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

• At least one of the events A or B occurs: $A \cup B$.

3

イロト 不得下 イヨト イヨト

- At least one of the events A or B occurs: $A \cup B$.
- Both events A and B occur: $A \cap B$.

э.

イロト イヨト イヨト

- At least one of the events A or B occurs: $A \cup B$.
- Both events A and B occur: $A \cap B$.
- Neither A nor B occurs: $A^c \cap B^c$.

э.

- At least one of the events A or B occurs: $A \cup B$.
- Both events A and B occur: $A \cap B$.
- Neither A nor B occurs: $A^c \cap B^c$.
- Event A occurs and B does not occur: $A \cap B^c$.

э.

(E) (E)

- At least one of the events A or B occurs: $A \cup B$.
- Both events A and B occur: $A \cap B$.
- Neither A nor B occurs: $A^c \cap B^c$.
- Event A occurs and B does not occur: $A \cap B^c$.
- Exactly one of the events A or B occurs: $(A \cap B^c) \cup (A^c \cap B)$.

3

- At least one of the events A or B occurs: $A \cup B$.
- Both events A and B occur: $A \cap B$.
- Neither A nor B occurs: $A^c \cap B^c$.
- Event A occurs and B does not occur: $A \cap B^c$.
- Exactly one of the events A or B occurs: $(A \cap B^c) \cup (A^c \cap B)$.
- Not more than one of the events A or B occurs: $(A^c \cap B^c) \cup (A \cap B^c) \cup (A^c \cap B)$.

イロト 不得 トイヨト イヨト ニヨー

• Probability of the impossible event is zero: $P(\emptyset) = 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Probability of the impossible event is zero: $P(\emptyset) = 0$.
- Probability of the complementary event: For any event A, $P(A^c) = 1 P(A)$.

- Probability of the impossible event is zero: $P(\emptyset) = 0$.
- Probability of the complementary event: For any event A, $P(A^c) = 1 P(A)$.
- Addition Rule for Two Events:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

- Probability of the impossible event is zero: $P(\emptyset) = 0$.
- Probability of the complementary event: For any event A, $P(A^c) = 1 P(A)$.
- Addition Rule for Two Events:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

• Conditional Probability:

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$
 if $P(B) > 0$.

- Probability of the impossible event is zero: $P(\emptyset) = 0$.
- Probability of the complementary event: For any event A, $P(A^c) = 1 P(A)$.
- Addition Rule for Two Events:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

• Conditional Probability:

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$
 if $P(B) > 0$.

• Independence of Events: Two events A and B are independent if:

$$P(A \cap B) = P(A) \cdot P(B).$$

• To prove $P(\emptyset) = 0$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- To prove $P(\emptyset) = 0$:
 - By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

- To prove $P(\emptyset) = 0$:
 - By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
 - Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.

イロン 不同 とくほう 不良 とうほう

• To prove $P(\emptyset) = 0$:

- By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
- Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
- Thus, $P(\emptyset) = 0$.

- To prove $P(\emptyset) = 0$:
 - By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
 - Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
 - Thus, $P(\emptyset) = 0$.
- To prove $P(A^c) = 1 P(A)$:

- To prove $P(\emptyset) = 0$:
 - By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
 - Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
 - Thus, $P(\emptyset) = 0$.
- To prove $P(A^c) = 1 P(A)$:
 - $A \cup A^c = S$ and $A \cap A^c = \emptyset$.

- To prove $P(\emptyset) = 0$:
 - By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
 - Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
 - Thus, $P(\emptyset) = 0$.
- To prove $P(A^c) = 1 P(A)$:
 - $A \cup A^c = S$ and $A \cap A^c = \emptyset$.
 - By the Additivity Axiom, $P(A \cup A^c) = P(A) + P(A^c)$.

- To prove $P(\emptyset) = 0$:
 - By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
 - Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
 - Thus, $P(\emptyset) = 0$.
- To prove $P(A^c) = 1 P(A)$:
 - $A \cup A^c = S$ and $A \cap A^c = \emptyset$.
 - By the Additivity Axiom, $P(A \cup A^c) = P(A) + P(A^c)$.
 - Since $P(A \cup A^c) = P(S) = 1$, we get $1 = P(A) + P(A^c)$.

• To prove $P(\emptyset) = 0$:

- By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
- Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
- Thus, $P(\emptyset) = 0$.
- To prove $P(A^c) = 1 P(A)$:
 - $A \cup A^c = S$ and $A \cap A^c = \emptyset$.
 - By the Additivity Axiom, $P(A \cup A^c) = P(A) + P(A^c)$.
 - Since $P(A \cup A^c) = P(S) = 1$, we get $1 = P(A) + P(A^c)$.
 - Thus, $P(A^c) = 1 P(A)$.

• To prove $P(\emptyset) = 0$:

- By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
- Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
- Thus, $P(\emptyset) = 0$.
- To prove $P(A^c) = 1 P(A)$:
 - $A \cup A^c = S$ and $A \cap A^c = \emptyset$.
 - By the Additivity Axiom, $P(A \cup A^c) = P(A) + P(A^c)$.
 - Since $P(A \cup A^c) = P(S) = 1$, we get $1 = P(A) + P(A^c)$.
 - Thus, $P(A^c) = 1 P(A)$.
- To prove $P(A \cup B) = P(A) + P(B) P(A \cap B)$:

• To prove $P(\emptyset) = 0$:

- By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
- Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
- Thus, $P(\emptyset) = 0$.
- To prove $P(A^c) = 1 P(A)$:
 - $A \cup A^c = S$ and $A \cap A^c = \emptyset$.
 - By the Additivity Axiom, $P(A \cup A^c) = P(A) + P(A^c)$.
 - Since $P(A \cup A^c) = P(S) = 1$, we get $1 = P(A) + P(A^c)$.
 - Thus, $P(A^c) = 1 P(A)$.
- To prove $P(A \cup B) = P(A) + P(B) P(A \cap B)$:
 - By the definition of union, $A \cup B = A + B (A \cap B)$.

• To prove $P(\emptyset) = 0$:

- By the Additivity Axiom, $P(S \cup \emptyset) = P(S) + P(\emptyset)$.
- Since $S \cup \emptyset = S$ and P(S) = 1, we get $1 = 1 + P(\emptyset)$.
- Thus, $P(\emptyset) = 0$.
- To prove $P(A^c) = 1 P(A)$:
 - $A \cup A^c = S$ and $A \cap A^c = \emptyset$.
 - By the Additivity Axiom, $P(A \cup A^c) = P(A) + P(A^c)$.
 - Since $P(A \cup A^c) = P(S) = 1$, we get $1 = P(A) + P(A^c)$.
 - Thus, $P(A^c) = 1 P(A)$.
- To prove $P(A \cup B) = P(A) + P(B) P(A \cap B)$:
 - By the definition of union, $A \cup B = A + B (A \cap B)$.
 - Using the Additivity Axiom, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.

www.postnetwork.co

Bindeshwar Singh Kushwaha (PostNetwork Academy)

э.

イロト イロト イヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

э.

イロト 不同 トイヨト イヨト

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

Thank You!

(ロ) (同) (三) (三) (三) (0) (○)