Spearman's Rank Correlation Coefficient Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

э.

イロト イヨト イヨト

• In many cases, the relationship between variables is not linear, making Pearson's correlation coefficient unsuitable.

3

イロト イヨト イヨト --

- In many cases, the relationship between variables is not linear, making Pearson's correlation coefficient unsuitable.
- Spearman's Rank Correlation measures the strength and direction of a monotonic relationship between two variables.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆

- In many cases, the relationship between variables is not linear, making Pearson's correlation coefficient unsuitable.
- Spearman's Rank Correlation measures the strength and direction of a monotonic relationship between two variables.
- It is particularly useful when:

イロト 不得 トイヨト イヨト ニヨー

- In many cases, the relationship between variables is not linear, making Pearson's correlation coefficient unsuitable.
- Spearman's Rank Correlation measures the strength and direction of a monotonic relationship between two variables.
- It is particularly useful when:
 - The data is ordinal or ranked.

イロト 不得 トイヨト イヨト ニヨー

- In many cases, the relationship between variables is not linear, making Pearson's correlation coefficient unsuitable.
- Spearman's Rank Correlation measures the strength and direction of a monotonic relationship between two variables.
- It is particularly useful when:
 - The data is ordinal or ranked.
 - The relationship is not linear.

イロン 不同 とくほう 不良 とうほう

- In many cases, the relationship between variables is not linear, making Pearson's correlation coefficient unsuitable.
- Spearman's Rank Correlation measures the strength and direction of a monotonic relationship between two variables.
- It is particularly useful when:
 - The data is ordinal or ranked.
 - The relationship is not linear.
- Spearman's method uses ranks instead of raw data values, making it robust to outliers and non-normal distributions.

イロト 不同 トイヨト イヨト 二日 二

Formula

$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

• d_i : Difference between ranks of corresponding values.

э.

イロト 不同 とくほ とくほと

Formula

$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

- d_i : Difference between ranks of corresponding values.
- *n*: Number of data pairs.

э.

イロト イヨト イヨト イヨト

Formula

$$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

- d_i : Difference between ranks of corresponding values.
- *n*: Number of data pairs.

э.

イロト イヨト イヨト イヨト

• Two ladies rank 7 different types of lipsticks.

E nar

・ロト ・四ト ・ヨト ・ヨト

- Two ladies rank 7 different types of lipsticks.
- Calculate Spearman's rank correlation coefficient for the ranks provided:

3

イロト 不同 とくほ とくほ とう

- Two ladies rank 7 different types of lipsticks.
- Calculate Spearman's rank correlation coefficient for the ranks provided:

Lipstick	Xi	Уi	$d_i = x_i - y_i$	d_i^2
A	1	2	-1	1
В	4	3	1	1
С	2	1	1	1
D	5	4	1	1
Е	3	5	-2	4
F	6	6	0	0
G	7	7	0	0

э.

イロト イヨト イヨト イヨト

• Compute $\sum d_i^2 = 12$.

- Compute $\sum d_i^2 = 12$.
- Substitute values into the formula:

- Compute $\sum d_i^2 = 12$.
- Substitute values into the formula:

$$r_s = 1 - \frac{6 \cdot \sum d_i^2}{n(n^2 - 1)}$$

- Compute $\sum d_i^2 = 12$.
- Substitute values into the formula:

$$r_s = 1 - \frac{6 \cdot \sum d_i^2}{n(n^2 - 1)}$$

• Substitute n = 7 and $\sum d_i^2 = 12$:

- Compute $\sum d_i^2 = 12$.
- Substitute values into the formula:

$$r_s = 1 - \frac{6 \cdot \sum d_i^2}{n(n^2 - 1)}$$

• Substitute
$$n = 7$$
 and $\sum d_i^2 = 12$:

$$r_s = 1 - \frac{6 \cdot 12}{7(7^2 - 1)}$$

- Compute $\sum d_i^2 = 12$.
- Substitute values into the formula:

$$r_s = 1 - \frac{6 \cdot \sum d_i^2}{n(n^2 - 1)}$$

• Substitute
$$n=7$$
 and $\sum d_i^2=12$:
$$r_s=1-\frac{6\cdot 12}{7(7^2-1)}$$

• Simplify:

1

$$r_s = 1 - \frac{72}{336} = 1 - 0.2143 = 0.7857$$

Spearman's Rank Correlation Coefficient

The Spearman's Rank Correlation Coefficient is:

 $r_{s} = 0.786$

• This indicates a strong positive correlation between the two rankings.

э.

イロト イヨト イヨト イヨト

Spearman's Rank Correlation Coefficient

The Spearman's Rank Correlation Coefficient is:

 $r_s = 0.786$

- This indicates a strong positive correlation between the two rankings.
- The closer r_s is to 1, the stronger the positive monotonic relationship.

э

イロト イヨト イヨト