Calculation of Skewness and Kurtosis using Pearson's Beta and Gamma Coefficients Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Website

PostNetwork Academy | www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

PostNetwork Academy Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

• Karl Pearson defined the following coefficients based on the first four central moments:

- Karl Pearson defined the following coefficients based on the first four central moments:
- β_1 is defined as:

$$eta_1=rac{\mu_3^2}{\mu_2^3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

- Karl Pearson defined the following coefficients based on the first four central moments:
- β_1 is defined as:

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3}$$

 $\bullet\,$ It is a measure of skewness. For a symmetrical distribution, β_1 is zero.

イロン 不同 とくほう 不良 とうほう

- Karl Pearson defined the following coefficients based on the first four central moments:
- β_1 is defined as:

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3}$$

- It is a measure of skewness. For a symmetrical distribution, β_1 is zero.
- γ_1 , the coefficient of skewness, resolves directionality:

$$\gamma_1 = \sqrt{\beta_1} = \frac{\mu_3}{(\mu_2)^{3/2}} = \frac{\mu_3}{\sigma^3}$$

3

イロト イヨト イヨト イヨト

Pearson's Beta and Gamma Coefficients (Continued)

• β_2 measures kurtosis:

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$

Pearson's Beta and Gamma Coefficients (Continued)

• β_2 measures kurtosis:

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$

• The coefficient of kurtosis γ_2 is given by:

$$\gamma_2 = \beta_2 - 3$$

э.

イロト イヨト イヨト

• β_2 measures kurtosis:

$$\beta_2 = \frac{\mu_4}{\mu_2^2}$$

• The coefficient of kurtosis γ_2 is given by:

$$\gamma_2 = \beta_2 - 3$$

• These coefficients provide insight into the distribution shape.

イロト 人間 ト イヨト イヨト

Frequency Table with Derived Columns

Problem: For the given data, calculate the first four moments about the mean and find β_1 , β_2 , γ_1 , and γ_2 . Given Data:

Marks (x)	5	10	15	20	25	30	35
Frequency (f)	4	10	20	36	16	12	2

Table: Frequency Distribution of Marks

Marks (x)	f	$d = \frac{(x-20)}{5}$	fd	fd^2	fd ³	fd ⁴
5	4	-3	-12	36	-108	324
10	10	-2	-20	40	-80	160
15	20	-1	-20	20	-20	20
20	36	0	0	0	0	0
25	16	1	16	16	16	16
30	12	2	24	48	96	192
35	2	3	6	18	54	162
Total	$\sum f = 100$		$\sum fd = -6$	$\sum fd^2 = 178$	$\sum fd^3 = -42$	$\sum fd^4 = 874$

Table: Frequency Distribution Table with Derived Columns:

• The first moment about the mean:

$$\mu_1' = \frac{\sum fd}{N} \times h = \frac{-6}{100} \times 5 = -0.30$$

• The first moment about the mean:

$$\mu'_1 = \frac{\sum fd}{N} \times h = \frac{-6}{100} \times 5 = -0.30$$

• The second moment about the mean:

$$\mu_2' = \frac{\sum fd^2}{N} \times h^2 = \frac{178}{100} \times 25 = 44.50$$

= 990

メロト メロト メヨト メヨト

• The first moment about the mean:

$$\mu'_1 = \frac{\sum fd}{N} \times h = \frac{-6}{100} \times 5 = -0.30$$

• The second moment about the mean:

$$\mu_2' = \frac{\sum fd^2}{N} \times h^2 = \frac{178}{100} \times 25 = 44.50$$

• The third moment about the mean:

$$\mu'_3 = rac{\sum fd^3}{N} imes h^3 = rac{-42}{100} imes 125 = -52.50$$

= 990

イロト イポト イヨト イヨト

• The first moment about the mean:

$$\mu'_1 = \frac{\sum fd}{N} \times h = \frac{-6}{100} \times 5 = -0.30$$

• The second moment about the mean:

$$\mu_2' = \frac{\sum fd^2}{N} \times h^2 = \frac{178}{100} \times 25 = 44.50$$

• The third moment about the mean:

$$\mu_3' = rac{\sum {\it fd}^3}{N} imes {\it h}^3 = rac{-42}{100} imes 125 = -52.50$$

• The fourth moment about the mean:

$$\mu_4' = \frac{\sum fd^4}{N} \times h^4 = \frac{874}{100} \times 625 = 5462.50$$

3

• The second moment about the mean:

$$\mu_2=\mu_2'-(\mu_1')^2=44.5-0.09=44.41=\sigma^2$$

• The second moment about the mean:

$$\mu_2 = \mu_2' - (\mu_1')^2 = 44.5 - 0.09 = 44.41 = \sigma^2$$

• The third moment about the mean:

$$\mu_3 = \mu_3' - 3\mu_2'\mu_1' + 2(\mu_1')^3 = -12.504$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

• The second moment about the mean:

$$\mu_2 = \mu_2' - (\mu_1')^2 = 44.5 - 0.09 = 44.41 = \sigma^2$$

• The third moment about the mean:

$$\mu_3 = \mu'_3 - 3\mu'_2\mu'_1 + 2(\mu'_1)^3 = -12.504$$

• The fourth moment about the mean:

$$\mu_4 = \mu'_4 - 4\mu'_3\mu'_1 + 6\mu'_2(\mu'_1)^2 - 3(\mu'_1)^4 = 5423.5057$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへの

• The skewness coefficient:

$$\beta_1 = rac{\mu_3^2}{\mu_2^3} = 0.001785$$

• The skewness coefficient:

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = 0.001785$$

• The standardized skewness coefficient:

$$\gamma_1 = \frac{\mu_3}{\sigma^3} = -0.0422$$
 (Negative Skewness)

= 990

メロト メポト メヨト メヨト

• The skewness coefficient:

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = 0.001785$$

• The standardized skewness coefficient:

$$\gamma_1 = \frac{\mu_3}{\sigma^3} = -0.0422$$
 (Negative Skewness)

• The kurtosis coefficient:

$$\beta_2 = \frac{\mu_4}{\mu_2^2} = 2.7499$$

э.

• The skewness coefficient:

$$\beta_1 = \frac{\mu_3^2}{\mu_2^3} = 0.001785$$

• The standardized skewness coefficient:

$$\gamma_1 = \frac{\mu_3}{\sigma^3} = -0.0422$$
 (Negative Skewness)

• The kurtosis coefficient:

$$\beta_2 = \frac{\mu_4}{\mu_2^2} = 2.7499$$

• The standardized kurtosis coefficient:

 $\gamma_2 = \beta_2 - 3 = -0.2501 \ (PlatyKurtic)$

э.

メロト メポト メヨト メヨト