The Definition and Calculation of The Correlation Coefficient Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

• Measures the strength and direction of a linear relationship between two variables.

- Measures the strength and direction of a linear relationship between two variables.
- Denoted by r, it ranges from -1 to +1:

- Measures the strength and direction of a linear relationship between two variables.
- Denoted by r, it ranges from -1 to +1:
 - r = +1: Perfect positive correlation.

- Measures the strength and direction of a linear relationship between two variables.
- Denoted by r, it ranges from -1 to +1:
 - r = +1: Perfect positive correlation.
 - r = -1: Perfect negative correlation.

- Measures the strength and direction of a linear relationship between two variables.
- Denoted by r, it ranges from -1 to +1:
 - r = +1: Perfect positive correlation.
 - r = -1: Perfect negative correlation.
 - r = 0: No linear correlation.

- Measures the strength and direction of a linear relationship between two variables.
- Denoted by r, it ranges from -1 to +1:
 - r = +1: Perfect positive correlation.
 - r = -1: Perfect negative correlation.
 - r = 0: No linear correlation.
- Formula:

$$r = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}$$

Assumptions for Correlation Coefficient

• Linearity: The relationship between the variables must be linear.

Assumptions for Correlation Coefficient

- Linearity: The relationship between the variables must be linear.
- **② Normality:** Both variables should follow a normal distribution.

Assumptions for Correlation Coefficient

- **1 Linearity:** The relationship between the variables must be linear.
- **②** Normality: Both variables should follow a normal distribution.
- Ocause-and-Effect Relationship: Correlation does not imply causation; it only measures association.

Causation Examples:

• Flipping a Switch and Turning on a Light:

- Flipping a Switch and Turning on a Light:
 - Flipping the switch (cause) results in the light turning on (effect).

- Flipping a Switch and Turning on a Light:
 - Flipping the switch (cause) results in the light turning on (effect).
- Smoking and Lung Cancer:

- Flipping a Switch and Turning on a Light:
 - Flipping the switch (cause) results in the light turning on (effect).
- Smoking and Lung Cancer:
 - Smoking (cause) significantly increases the risk of lung cancer (effect).

- Flipping a Switch and Turning on a Light:
 - Flipping the switch (cause) results in the light turning on (effect).
- Smoking and Lung Cancer:
 - Smoking (cause) significantly increases the risk of lung cancer (effect).
- Studying and Grades:

- Flipping a Switch and Turning on a Light:
 - Flipping the switch (cause) results in the light turning on (effect).
- Smoking and Lung Cancer:
 - Smoking (cause) significantly increases the risk of lung cancer (effect).
- Studying and Grades:
 - More study time (cause) leads to better exam grades (effect).

- Flipping a Switch and Turning on a Light:
 - Flipping the switch (cause) results in the light turning on (effect).
- Smoking and Lung Cancer:
 - Smoking (cause) significantly increases the risk of lung cancer (effect).
- Studying and Grades:
 - More study time (cause) leads to better exam grades (effect).
- Exercise and Fitness:

- Flipping a Switch and Turning on a Light:
 - Flipping the switch (cause) results in the light turning on (effect).
- Smoking and Lung Cancer:
 - Smoking (cause) significantly increases the risk of lung cancer (effect).
- Studying and Grades:
 - More study time (cause) leads to better exam grades (effect).
- Exercise and Fitness:
 - Regular exercise (cause) improves physical fitness (effect).

Data:

Data:

$$X = [10, 20, 30, 40, 50], Y = [15, 30, 45, 60, 75]$$

Steps:

• Compute means:

$$\bar{X} = \frac{\sum X}{n} = 30, \quad \bar{Y} = \frac{\sum Y}{n} = 45.$$

Data:

$$X = [10, 20, 30, 40, 50], \quad Y = [15, 30, 45, 60, 75]$$

Steps:

• Compute means:

$$\bar{X} = \frac{\sum X}{n} = 30, \quad \bar{Y} = \frac{\sum Y}{n} = 45.$$

2 Find deviations:

$$d_x = X - \bar{X}, \quad d_y = Y - \bar{Y}.$$

Data:

$$X = [10, 20, 30, 40, 50], \quad Y = [15, 30, 45, 60, 75]$$

Steps:

• Compute means:

$$\bar{X} = \frac{\sum X}{n} = 30, \quad \bar{Y} = \frac{\sum Y}{n} = 45.$$

Find deviations:

$$d_x = X - \bar{X}, \quad d_y = Y - \bar{Y}.$$

3 Compute *r*:

$$r = \frac{\sum d_x d_y}{\sqrt{\sum d_x^2 \cdot \sum d_y^2}}.$$

Example 1: Computation Table

Step-by-Step Table:

X	Y	$d_{\scriptscriptstyle X}$	d_y	d_x^2	d_y^2	$d_x d_y$
10	15	-20	-30	400	900	600
20	30	-10	-15	100	225	150
30	45	0	0	0	0	0
40	60	10	15	100	225	150
50	75	20	30	400	900	600
\sum	\sum	0	0	1000	2250	1500

Final Calculation:

Example 1: Computation Table

Step-by-Step Table:

X	Y	$d_{\scriptscriptstyle X}$	d_y	d_x^2	d_y^2	$d_x d_y$
10	15	-20	-30	400	900	600
20	30	-10	-15	100	225	150
30	45	0	0	0	0	0
40	60	10	15	100	225	150
50	75	20	30	400	900	600
\sum	\sum	0	0	1000	2250	1500

Final Calculation:

$$r = \frac{\sum d_x d_y}{\sqrt{\sum d_x^2 \cdot \sum d_y^2}} = \frac{1500}{\sqrt{1000 \cdot 2250}} = \frac{1500}{1500} = 1$$

Result: r = 1 indicates a perfect positive correlation.

 \bullet The correlation coefficient r measures the linear relationship between two variables.

- \bullet The correlation coefficient r measures the linear relationship between two variables.
- Causation is stronger, requiring evidence that one variable directly affects the other.

- \bullet The correlation coefficient r measures the linear relationship between two variables.
- Causation is stronger, requiring evidence that one variable directly affects the other.
- Examples:

- \bullet The correlation coefficient r measures the linear relationship between two variables.
- Causation is stronger, requiring evidence that one variable directly affects the other.
- Examples:
 - r = 1: Perfect positive correlation.

- \bullet The correlation coefficient r measures the linear relationship between two variables.
- Causation is stronger, requiring evidence that one variable directly affects the other.
- Examples:
 - r = 1: Perfect positive correlation.
 - r = -1: Perfect negative correlation.

Reach PostNetwork Academy

Website

PostNetwork Academy | www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetwork academy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy