Prove $-1 \le r(X, Y) \le 1$ for Karl Pearson's Correlation Coefficient Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

Problem Statement

Prove that:

$$-1 \leq r(X,Y) \leq 1$$

Problem Statement

Prove that:

$$-1 \leq r(X, Y) \leq 1$$

The correlation coefficient r(X, Y) is a measure of the linear relationship between two variables X and Y.

Formula for Correlation Coefficient

Step 1: Express the formula for r(X, Y)

• The formula for r(X, Y) is:

$$r(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{X})^2 \sum_{i=1}^{n} (y_i - \overline{Y})^2}}$$

Formula for Correlation Coefficient

Step 1: Express the formula for r(X, Y)

• The formula for r(X, Y) is:

$$r(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{X})^2 \sum_{i=1}^{n} (y_i - \overline{Y})^2}}$$

• Let:

$$x_i - \overline{X} = a_i$$
 and $y_i - \overline{Y} = b_i$

Formula for Correlation Coefficient

Step 1: Express the formula for r(X, Y)

• The formula for r(X, Y) is:

$$r(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{X})(y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{X})^2 \sum_{i=1}^{n} (y_i - \overline{Y})^2}}$$

• Let:

$$x_i - \overline{X} = a_i$$
 and $y_i - \overline{Y} = b_i$

• Substituting:

$$r(X,Y) = \frac{\sum_{i=1}^{n} a_{i}b_{i}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}}}$$

Step 2: Apply the Cauchy-Schwarz inequality

• By the Cauchy-Schwarz inequality:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

Step 2: Apply the Cauchy-Schwarz inequality

• By the Cauchy-Schwarz inequality:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

• From this, we get:

$$\left(\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}}}\right)^{2} \leq 1$$

Step 2: Apply the Cauchy-Schwarz inequality

• By the Cauchy-Schwarz inequality:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

• From this, we get:

$$\left(rac{\sum_{i=1}^{n}a_{i}b_{i}}{\sqrt{\sum_{i=1}^{n}a_{i}^{2}\sum_{i=1}^{n}b_{i}^{2}}}
ight)^{2}\leq1$$

• Thus:

$$(r(X,Y))^2 \leq 1$$

Step 2: Apply the Cauchy-Schwarz inequality

• By the Cauchy-Schwarz inequality:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

• From this, we get:

$$\left(rac{\sum_{i=1}^{n}a_{i}b_{i}}{\sqrt{\sum_{i=1}^{n}a_{i}^{2}\sum_{i=1}^{n}b_{i}^{2}}}
ight)^{2}\leq1$$

• Thus:

$$(r(X,Y))^2 \leq 1$$

Step 2: Apply the Cauchy-Schwarz inequality

• By the Cauchy-Schwarz inequality:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \leq \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

• From this, we get:

$$\left(\frac{\sum_{i=1}^{n} a_{i} b_{i}}{\sqrt{\sum_{i=1}^{n} a_{i}^{2} \sum_{i=1}^{n} b_{i}^{2}}}\right)^{2} \leq 1$$

• Thus:

$$(r(X,Y))^2 \leq 1$$

Step 3: Conclude the proof

$$-1 \le r(X, Y) \le 1$$

Reach PostNetwork Academy

Website

PostNetwork Academy | www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetwork academy

Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

Thank You!