Calculating Variance of Discrete Frequency Distribution Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Website

PostNetwork Academy | www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

PostNetwork Academy Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn

www.linkedin.com/company/postnetworkacademy

Xi	0	1	2	3	4	5
f_i	x-2	Х	<i>x</i> ₂	$(x+1)^2$	2x	x+1

Xi	0	1	2	3	4	5
f_i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get

Xi	0	1	2	3	4	5
f_i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get $(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$

(4) E > (4) E >

Xi	0	1	2	3	4	5
f_i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get

$$(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$$

After simplification

Bindeshwar Singh Kushwaha (PostNetwork Academy) Calculating Variance of Discrete Frequency Distribution

э.

イロト 不同 トイヨト イヨト

Xi	0	1	2	3	4	5
f_i	x-2	х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get $(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$

After simplification

 $2x^2 + 7x - 60 = 0$

Xi	0	1	2	3	4	5
f _i	x-2	х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get $(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

イロト 不得 トイヨト イヨト ニヨー

Xi	0	1	2	3	4	5
f_i	x-2	х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get

$$(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$$

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

3

イロト 不同 トイヨト イヨト

Xi	0	1	2	3	4	5
f _i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get
$$(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$$

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

We will consider below because other will give -ve value of x

Xi	0	1	2	3	4	5
f_i	x-2	х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

We will consider below because other will give -ve value of x

x - 4 = 0

It is given that N=60, then we will get $(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

Xi	0	1	2	3	4	5
f _i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get $(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

We will consider below because other will give -ve value of x

x - 4 = 0

Value of x will be

Xi	0	1	2	3	4	5
f _i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

It is given that N=60, then we will get $(x-2) + x + x^2 + (x+1)^2 + 2x + (x+1) = 60$

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

We will consider below because other will give -ve value of x

x - 4 = 0

Value of x will be

x = 4

- * ロ * * @ * * 注 * * 注 * うへの

Xi	0	1	2	3	4	5
f _i	x-2	х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

We will consider below because other will give -ve value of x

x - 4 = 0

Value of x will be

x = 4

lt is	given	that	N=60,	then	we w	ill g	et
(x –	2) + <i>x</i>	$+ x^{2}$	+(x + 1)	$)^{2} + 2$	x + (x	+1) = 60

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

Thus, we will obtain the following frequence distribution

Xi	0	1	2	3	4	5
f _i	2	4	16	25	8	5

Xi	0	1	2	3	4	5
f _i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

lt	is	given	that	N=60,	then	we will	get
(<i>x</i>	_	2) + <i>x</i>	$+x^{2}$	+(x+1)	$)^{2}+2$	x + (x + x)	1) = 60

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

We will consider below because other will give -ve value of x

x - 4 = 0

Value of x will be

x = 4

Thus, we will obtain the following frequence distribution

Xi	0	1	2	3	4	5
f _i	2	4	16	25	8	5

Finding out variance

$$N = 60, \sum f_i x_i = 168, \sum f_i x_i^2 = 546$$

Xi	0	1	2	3	4	5
f _i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

lt is	s given	that	N=60,	then	we will	get
(x -	- 2) + <i>x</i>	$+x^{2}$	+(x + 1)	$)^{2} + 2$	x + (x + x)	1) = 60

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

We will consider below because other will give -ve value of x

x - 4 = 0

Value of x will be

x = 4

Thus, we will obtain the following frequence distribution

Xi	0	1	2	3	4	5
f _i	2	4	16	25	8	5

Finding out variance

$$N = 60, \sum f_i x_i = 168, \sum f_i x_i^2 = 546$$

Variance $= \frac{1}{N} \sum f_i x_i^2 - (\frac{1}{N} (\sum f_i x_i))^2$

Xi	0	1	2	3	4	5
f _i	x-2	Х	<i>x</i> ₂	$(x + 1)^2$	2x	x+1

lt is	given	that	N=60,	then	we will	get
(x –	2) + <i>x</i>	$+x^{2}$	+(x + 1)	$)^{2}+2$	x + (x +	1) = 60

After simplification

 $2x^2 + 7x - 60 = 0$

We will obtain two factors

(2x+15)(x-4)=0

We will consider below because other will give -ve value of x

x - 4 = 0

Value of x will be

x = 4

Thus, we will obtain the following frequence distribution

Xi	0	1	2	3	4	5
f _i	2	4	16	25	8	5

Finding out variance

$$N = 60, \sum f_i x_i = 168, \sum f_i x_i^2 = 546$$

Variance = $\frac{1}{N} \sum f_i x_i^2 - (\frac{1}{N} (\sum f_i x_i))^2$
Variance = $\frac{1}{60} 546 - (\frac{168}{60})^2 = 1.26$