Computing Percentiles Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Website

PostNetwork Academy | www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

PostNetwork Academy Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn Page

www.linkedin.com/company/postnetworkacademy

イロト 不良 トイヨト イヨト

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles.

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile. Position of $Q_1: \frac{n+1}{4}$

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile. Position of $Q_1: \frac{n+1}{4}$ With n = 10:

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile. Position of $Q_1: \frac{n+1}{4}$

With n = 10: Q_1 position = $\frac{10+1}{4}$ = 2.75

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate:

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{n+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile.

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of Q_3 : $\frac{3(n+1)}{4}$

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of Q_3 : $\frac{3(n+1)}{4}$ With n = 10:

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of $Q_3: \frac{3(n+1)}{4}$ With n = 10: Q_3 position = $\frac{3(10+1)}{4}$ = 8.25

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile. Position of $Q_1: \frac{n+1}{2}$

Position of Q1: $\frac{-4}{4}$ With n = 10: $\frac{10+1}{4} = 2.75$ The 2.75th position = $\frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of Q_3 : $\frac{3(n+1)}{4}$ With n = 10: Q_3 position = $\frac{3(10+1)}{4} = 8.25$ The 8.25^{th} position is between the 8th and 9th values, so we interpolate:

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of Q_3 : $\frac{3(n+1)}{4}$ With n = 10: Q_3 position = $\frac{3(10+1)}{4}$ = 8.25 The 8.25th position is between the 8th and 9th values, so we interpolate: $Q_3 = 16 + 0.25 \times (18 - 16) = 16 + 0.25 \times 2 = 16 + 0.5 = 16.50$

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of $Q_3: \frac{3(n+1)}{4}$ With n = 10: Q_3 position $= \frac{3(10+1)}{4} = 8.25$ The 8.25^{th} position is between the 8th and 9th values, so we interpolate: $Q_3 = 16 + 0.25 \times (18 - 16) = 16 + 0.25 \times 2 = 16 + 0.5 = 16.50$ The interquartile range (IQR) is the range between Q_3 and Q_1 :

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of Q_3 : $\frac{3(n+1)}{4}$ With n = 10: Q_3 position = $\frac{3(10+1)}{4}$ = 8.25 The 8.25^{th} position is between the 8th and 9th values, so we interpolate: $Q_3 = 16 + 0.25 \times (18 - 16) = 16 + 0.25 \times 2 = 16 + 0.5 = 16.50$ The interquartile range (1QR) is the range between Q_3 and Q_1 : $IQR = Q_3 - Q_1 = 16.5 - 5.5 = 11$

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of $Q_3: \frac{3(n+1)}{4}$ With n = 10: Q_3 position = $\frac{3(10+1)}{4} = 8.25$ The 8.25^{th} position is between the 8th and 9th values, so we interpolate: $Q_3 = 16 + 0.25 \times (18 - 16) = 16 + 0.25 \times 2 = 16 + 0.5 = 16.50$ The interquartile range (IQR) is the range between Q_3 and Q_1 : IQR = Q3 - Q1 = 16.5 - 5.5 = 11 The quartile deviation (semi-interquartile range) is half of the IQR:

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of $Q_3: \frac{3(n+1)}{4}$ With n = 10: Q_3 position = $\frac{3(10+1)}{4} = 8.25$ The 8.25^{th} position is between the 8th and 9th values, so we interpolate: $Q_3 = 16 + 0.25 \times (18 - 16) = 16 + 0.25 \times 2 = 16 + 0.5 = 16.50$ The interquartile range (IQR) is the range between Q_3 and Q_1 : IQR = Q3 - Q1 = 16.5 - 5.5 = 11 The quartile deviation (semi-interquartile range) is half of the IQR: Q.D. = $\frac{Q3-Q1}{2} = \frac{11}{2} = 5.5$

To calculate the quartile deviation using the formula, let's proceed step-by-step with the dataset: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

Computing Q_1

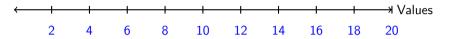
For a dataset with n values, quartiles can be found by identifying the data points that correspond to specific percentiles. First quartile Q_1 is the value at the 25th percentile.

Position of $Q1: \frac{n+1}{4}$ With $n = 10: \frac{n+1}{4}$ Q_1 position $= \frac{10+1}{4} = 2.75$ The 2.75th position is between the 2nd and 3rd values, so we interpolate: $Q_1 = 4 + 0.75 \times (6 - 4) = 4 + 0.75 \times 2 = 4 + 1.5 = 5.50$

Computing Q_3

Third quartile Q_3 is the value at the 75th percentile. Position of $Q_3: \frac{3(n+1)}{4}$ With n = 10: Q_3 position $= \frac{3(10+1)}{4} = 8.25$ The 8.25^{th} position is between the 8th and 9th values, so we interpolate: $Q_3 = 16 + 0.25 \times (18 - 16) = 16 + 0.25 \times 2 = 16 + 0.5 = 16.50$ The interquartile range (IQR) is the range between Q_3 and Q_1 : IQR = Q3 - Q1 = 16.5 - 5.5 = 11The quartile deviation (semi-interquartile range) is half of the IQR: Q.D. $= \frac{Q_3 - Q1}{21} = \frac{11}{2} = 5.5$ Q1 = 5.5, Q3 = 16.5,Interquartile Range (IQR) = 11, Quartile Deviation (Q.D.) = 5.5 → Values

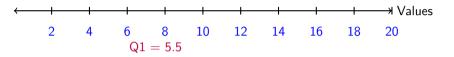
▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで



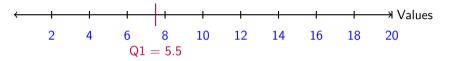
Bindeshwar Singh Kushwaha (PostNetwork Academy)

4 / 4

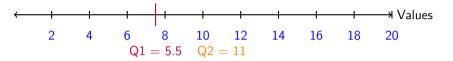
◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の Q @



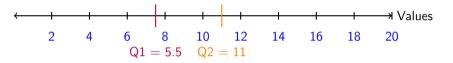
4/4



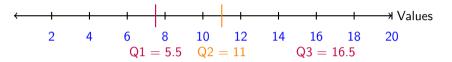
4 ロ ト 4 回 ト 4 目 ト 4 目 ト 1 三 の 4 () 4/4



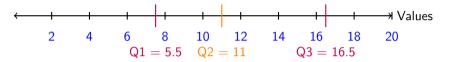
◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ の Q @



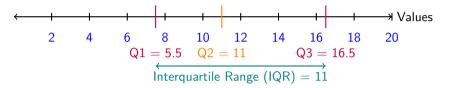
4/4

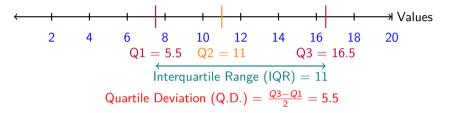


4 ロ ト 4 回 ト 4 目 ト 4 目 ト 1 三 の 4 () 4/4

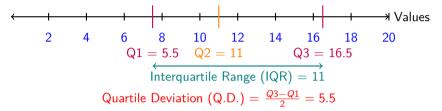


4/4





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで



So, the quartile deviation of the dataset is 5.5, which reflects the average spread of the middle 50% of values around the median.

3

イロト イヨト イヨト ・