Computing Percentiles

Data Science and A.I. Lecture Series

Bindeshwar Singh Kushwaha

PostNetwork Academy

Reach PostNetwork Academy

Website

PostNetwork Academy | www.postnetwork.co

YouTube Channel

www.youtube.com/@postnetworkacademy

PostNetwork Academy Facebook Page

www.facebook.com/postnetworkacademy

LinkedIn

www.linkedin.com/company/postnetworkacademy

Given the data set 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60 calculate the 30^{th} and 60^{th} percentile .

Percentile

Given the data set 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60 calculate the 30^{th} and 60^{th} percentile .

Percentile

Percentiles are those values of the variate which divide the distribution into 100 equal parts, therefore number of percentile is 99.

Given the data set 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60 calculate the 30^{th} and 60^{th} percentile .

Percentile

Percentiles are those values of the variate which divide the distribution into 100 equal parts, therefore number of percentile is 99.

 30^{th} percentile is denoted by P_{30} and to compute its formula is $P_{30} = (\frac{30 \times (n+1)}{100})^{th}$ observation. There are 20 observations so n=20.

Given the data set 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60 calculate the 30^{th} and 60^{th} percentile .

Percentile

Percentiles are those values of the variate which divide the distribution into 100 equal parts, therefore number of percentile is 99.

 30^{th} percentile is denoted by P_{30} and to compute its formula is $P_{30} = (\frac{30 \times (n+1)}{100})^{th}$ observation. There are 20 observations so n=20.

Then $P_{30} = (\frac{30 \times (20+1)}{100})^{th}$ observation=6.30 = 18+0.30*(21-18)=20.10

Given the data set 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60 calculate the 30^{th} and 60^{th} percentile .

Percentile

Percentiles are those values of the variate which divide the distribution into 100 equal parts, therefore number of percentile is 99.

 30^{th} percentile is denoted by P_{30} and to compute its formula is $P_{30} = (\frac{30\times(n+1)}{100})^{th}$ observation. There are 20 observations so n=20.

Then $P_{30} = (\frac{30 \times (20+1)}{100})^{th}$ observation=6.30 = 18+0.30*(21-18)=20.10

 60^{th} percentile is denoted by P_{60} and to compute, its formula is $P_{60} = (\frac{60 \times (n+1)}{100})^{th}$ observation.

Given the data set 3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60 calculate the 30^{th} and 60^{th} percentile .

Percentile

Percentiles are those values of the variate which divide the distribution into 100 equal parts, therefore number of percentile is 99.

 30^{th} percentile is denoted by P_{30} and to compute its formula is $P_{30} = (\frac{30\times(n+1)}{100})^{th}$ observation. There are 20 observations so n=20.

Then $P_{30} = (\frac{30 \times (20+1)}{100})^{th}$ observation=6.30 = 18+0.30*(21-18)=20.10

 60^{th} percentile is denoted by P_{60} and to compute, its formula is $P_{60} = (\frac{60 \times (n+1)}{100})^{th}$ observation.

Then $P_{60} = \left(\frac{60 \times (20+1)}{100}\right)^{th}$ observation=12.60 observation = 18+0.60*(39-36)=37.20