Some Questions Based on Discrete Probability Distributions
Data Science and A.I. Lecture Series
Problem 1
2 bad articles are mixed with 5 good ones. Find the probability distribution of the number of bad articles if 2 articles are drawn at random.
Let \( X \) be the number of bad articles drawn. Possible values: \( X = 0, 1, 2 \).
\[
P(X = 0) = \frac{\binom{5}{2}}{\binom{7}{2}} = \frac{10}{21}
\]
\[
P(X = 1) = \frac{\binom{2}{1} \binom{5}{1}}{\binom{7}{2}} = \frac{10}{21}
\]
\[
P(X = 2) = \frac{\binom{2}{2}}{\binom{7}{2}} = \frac{1}{21}
\]
Problem 2
Given the probability distribution:
X | P(X) |
---|---|
0 | \( \frac{1}{10} \) |
1 | \( \frac{3}{10} \) |
2 | \( \frac{1}{2} \) |
3 | \( \frac{1}{10} \) |
Let \( Y = X^2 + 2X \). Find the probability distribution of \( Y \).
Computed values of \( Y \):
- If \( X = 0 \), then \( Y = 0 \).
- If \( X = 1 \), then \( Y = 3 \).
- If \( X = 2 \), then \( Y = 8 \).
- If \( X = 3 \), then \( Y = 15 \).
Problem 3
An urn contains 3 white and 4 red balls. 3 balls are drawn one by one with replacement. Find the probability distribution of the number of red balls.
Let \( X \) be the number of red balls drawn. Possible values: \( X = 0, 1, 2, 3 \).
\[
P(X = 0) = \left(\frac{3}{7}\right)^3 = \frac{27}{343}
\]
\[
P(X = 1) = 3 \times \left(\frac{4}{7} \times \frac{3}{7} \times \frac{3}{7}\right) = \frac{108}{343}
\]
\[
P(X = 2) = 3 \times \left(\frac{4}{7} \times \frac{4}{7} \times \frac{3}{7}\right) = \frac{144}{343}
\]
\[
P(X = 3) = \left(\frac{4}{7}\right)^3 = \frac{64}{343}
\]
Some Questions on Discrete Probability Distributions
Video
Follow PostNetwork Academy
Website: www.postnetwork.co
YouTube: www.youtube.com/@postnetworkacademy
Facebook: www.facebook.com/postnetworkacademy
LinkedIn: www.linkedin.com/company/postnetworkacademy