Set Operations and Important Laws

Set Operations and Important Laws

Data Science and A.I. Lecture Series

 

Set Operations

Union

Definition:

AB={x:xA or xB}

Examples:

  • A={1,2,3},B={3,4,5}AB={1,2,3,4,5}
  • A={a,b},B={b,c,d}AB={a,b,c,d}

Intersection

Definition:

AB={x:xA and xB}

Examples:

  • A={1,2,3},B={3,4,5}AB={3}
  • A={a,b,c},B={b,c,d}AB={b,c}

Complement

Definition:

Ac={xU:xA}

Examples:

  • U={1,2,3,4,5},A={1,2}Ac={3,4,5}
  • U={a,b,c,d},A={a,b}Ac={c,d}

Important Laws of Sets

Idempotent and Identity Laws

Idempotent Laws:

AA=A,AA=A

Identity Laws:

A=A,AU=A

Example:

A={1,2},U={1,2,3},={}

A={1,2},AU={1,2}

Distributive and De Morgan’s Laws

Distributive Laws:

A(BC)=(AB)(AC)

A(BC)=(AB)(AC)

De Morgan’s Laws:

(AB)c=AcBc

(AB)c=AcBc

Applications of Sets

Practical problems using sets:

  • n(AB)=n(A)+n(B)n(AB)
  • n(AB)=n(AB)+n(AB)+n(BA)

Example: Language Proficiency

In a group of 500 persons, 400 can speak Hindi and 150 can speak English. Using formulas, the results are:

  • Both Hindi and English: 50
  • Only Hindi: 350
  • Only English: 100

PDF

Loading...

Video

Thank You!

Follow PostNetwork Academy for more:

 

©Postnetwork-All rights reserved.