Relative Frequency Approach in Probability


Relative Frequency Approach in Probability

Data Science and A.I. Lecture Series

Author: Bindeshwar Singh Kushwaha

 

Relative Frequencies and Probabilities

So, in general, if \( X \) is a variable having the values \( x_1, x_2, \dots, x_n \) with frequencies \( f_1, f_2, \dots, f_n \), respectively, then:

\[
\frac{f_1}{\sum f_i}, \frac{f_2}{\sum f_i}, \dots, \frac{f_n}{\sum f_i}
\]

are the relative frequencies of \( x_1, x_2, \dots, x_n \), respectively, and hence the probabilities of \( X \) taking the values \( x_1, x_2, \dots, x_n \).

Example 1: Age of Couples

Age Distribution of 100 Couples
Age of Husband
Age of Wife
15-25 25-35 35-45 45-55
6 3 0 0
20-30 3 16 10 0
30-40 0 10 15 7
40-50 0 0 7 10
50-60 0 0 4 5

Probability of wife’s age \( 20-50 \):
\[
P = \frac{3 + 16 + 10 + 10 + 15 + 7}{100} = 0.82
\]

Probability of wife’s age \( 20-40 \) and husband’s age \( 35-45 \):
\[
P = \frac{10 + 15}{100} = 0.25
\]

Example 2: Student Ages

Age Distribution of 15 Students
Age (Years) Frequency (\( f \)) Relative Frequency (\( \frac{f}{15} \))
14 2 \( \frac{2}{15} \)
15 1 \( \frac{1}{15} \)
16 2 \( \frac{2}{15} \)
17 3 \( \frac{3}{15} \)
18 1 \( \frac{1}{15} \)
19 2 \( \frac{2}{15} \)
20 3 \( \frac{3}{15} \)
21 1 \( \frac{1}{15} \)

Probability of age divisible by 3 (\( 15, 18, 21 \)):
\[
P = \frac{1 + 1 + 1}{15} = 0.2
\]

Probability of age \( >16 \):
\[
P = \frac{3 + 1 + 2 + 3 + 1}{15} = 0.6667
\]

Probability of age \( \geq 18 \):
\[
P = \frac{1 + 2 + 3 + 1}{15} = 0.4667
\]

Example 3: Tyre Durability

Distance Covered by Tyres (2000 Cases)
Distance (km) Frequency (\( f \)) Relative Frequency (\( \frac{f}{2000} \))
Less than 4000 20 \( \frac{20}{2000} \)
4001-10000 100 \( \frac{100}{2000} \)
10001-20000 200 \( \frac{200}{2000} \)
20001-40000 1500 \( \frac{1500}{2000} \)
More than 40000 180 \( \frac{180}{2000} \)

Probability of \( \geq 4001 \, \text{km} \):
\[
P = \frac{100 + 200 + 1500 + 180}{2000} = 0.99
\]

Probability of \( \leq 20000 \, \text{km} \):
\[
P = \frac{20 + 100 + 200}{2000} = 0.16
\]

Probability of \( >20000 \, \text{km} \):
\[
P = \frac{1500 + 180}{2000} = 0.84
\]

PDF

Relative Frequency Approach in Probability

Video

©Postnetwork-All rights reserved.