Prove \( -1 \leq r(X, Y) \leq 1 \) for Karl Pearson’s Correlation Coefficient
Data Science and A.I. Lecture Series
Author: Bindeshwar Singh Kushwaha
Institute: PostNetwork Academy
Problem Statement
Prove that:
\[
-1 \leq r(X, Y) \leq 1
\]
The correlation coefficient \( r(X, Y) \) is a measure of the linear relationship between two variables \( X \) and \( Y \).
Formula for Correlation Coefficient
Step 1: Express the formula for \( r(X, Y) \)
The formula for \( r(X, Y) \) is:
\[
r(X, Y) = \frac{\sum_{i=1}^n (x_i – \overline{X})(y_i – \overline{Y})}{\sqrt{\sum_{i=1}^n (x_i – \overline{X})^2 \sum_{i=1}^n (y_i – \overline{Y})^2}}
\]
Let:
\[
x_i – \overline{X} = a_i \quad \text{and} \quad y_i – \overline{Y} = b_i
\]
Substituting:
\[
r(X, Y) = \frac{\sum_{i=1}^n a_i b_i}{\sqrt{\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2}}
\]
Proof using Cauchy-Schwarz Inequality
Step 2: Apply the Cauchy-Schwarz inequality
By the Cauchy-Schwarz inequality:
\[
\left( \sum_{i=1}^n a_i b_i \right)^2 \leq \left( \sum_{i=1}^n a_i^2 \right) \left( \sum_{i=1}^n b_i^2 \right)
\]
From this, we get:
\[
\left( \frac{\sum_{i=1}^n a_i b_i}{\sqrt{\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2}} \right)^2 \leq 1
\]
Thus:
\[
\left( r(X, Y) \right)^2 \leq 1
\]
Step 3: Conclude the proof
\[
-1 \leq r(X, Y) \leq 1
\]
PDF Presentation
corelprop2Video
Reach PostNetwork Academy
- Website: PostNetwork Academy
- YouTube Channel: PostNetwork Academy YouTube
- Facebook Page: PostNetwork Academy Facebook
- LinkedIn Page: PostNetwork Academy LinkedIn
Thank You!