Joint and Marginal Probability Mass Function.png

Joint and Marginal Probability Mass Function

Joint and Marginal Probability Mass Function For UploadingIf (X,Y) is a two-dimensional discrete random variable, then joint probability mass function of  X and Y denoted by pxy  and is defined as

pxy(xi,yj)=P(X=xi,Y=yj)

If you toss three coins the following sample space you will get.

S={TTT, TTH, THT, THH, HTT, HTH, HHT,HHH}

X—- Occurrence of heads

Y—- Occurrence of tails

X={0, 1, 2, 3}

Y={0, 1, 2, 3}

Probabilities of events will be

P(X=0)=1/8,   P(X=1)=3/8,   P(X=2)=3/8,   P(X=3)=1/8

P(Y=0)=1/8,   P(Y=1)=3/8,   P(Y=2)=3/8,   P(Y=3)=1/8

And joint probabilities are

P(X=0,Y=0)=0

P(X=0,Y=1)=0

P(X=0,Y=2)=0

P(X=0,Y=3)= 1/8

P(X=1,Y=0)=0

P(X=1,Y=1)=0

P(X=1,Y=2)=3/8

P(X=1, Y=3)=0

P(X=2, Y=0)=0

P(X=2, Y=1)=3/8

P(X=2, Y=2)=0

P(X=2, Y=3)=0

P(X=3, Y=0)=1/8

P(X=3, Y=1)=0

P(X=3, Y=2)=0

P(X=3, Y=3)=0

Y

X
0123 Distribution
of Y
00001/81/8
1003/803/8
203/8003/8
31/80001/8
Distribution
of Y
1/83/83/81/81

Marginal Probability Mass Function of X

px(0) = pxy(0,0) + pxy(0,1) + pxy(0,2) + pxy(0,3) = 0+0+0+1/8= 1/8

px(1) = pxy(1,0) + pxy(1,1) + pxy(1,2) + pxy(1,3) = 0+0+3/8+0= 3/8

px(2) = pxy(2,0) + pxy(2,1) + pxy(2,2) + pxy(2,3) = 0+3/8+0+0= 3/8

px(3) = pxy(3,0) + pxy(3,1) + pxy(3,2) + pxy(3,3) = 1/8+0+0+0= 1/8

Marginal Probability Mass Function of Y

py(0) = pxy(0,0) + pxy(1,0) + pxy(2,0) + pxy(3,0) = 0+0+0+1/8= 1/8

py(1) = pxy(0,1) + pxy(1,1) + pxy(2,1) + pxy(3,1) = 0+0+3/8+0= 3/8

py(2) = pxy(0,2) + pxy(1,2) + pxy(2,2) + pxy(3,2) = 0+3/8+0+0= 3/8

py(3) = pxy(0,3) + pxy(1,3) + pxy(2,3) + pxy(3,3) = 1/8+0+0+0= 1/8

PDF File

Joint and Marginal Probability Mass Function

Leave a Comment

Your email address will not be published. Required fields are marked *

©Postnetwork-All rights reserved.