Joint and Marginal Probability Mass Function For UploadingIf (X,Y) is a two-dimensional discrete random variable, then joint probability mass function of X and Y denoted by pxy and is defined as
pxy(xi,yj)=P(X=xi,Y=yj)
If you toss three coins the following sample space you will get.
S={TTT, TTH, THT, THH, HTT, HTH, HHT,HHH}
X—- Occurrence of heads
Y—- Occurrence of tails
X={0, 1, 2, 3}
Y={0, 1, 2, 3}
Probabilities of events will be
P(X=0)=1/8, P(X=1)=3/8, P(X=2)=3/8, P(X=3)=1/8
P(Y=0)=1/8, P(Y=1)=3/8, P(Y=2)=3/8, P(Y=3)=1/8
And joint probabilities are
P(X=0,Y=0)=0
P(X=0,Y=1)=0
P(X=0,Y=2)=0
P(X=0,Y=3)= 1/8
P(X=1,Y=0)=0
P(X=1,Y=1)=0
P(X=1,Y=2)=3/8
P(X=1, Y=3)=0
P(X=2, Y=0)=0
P(X=2, Y=1)=3/8
P(X=2, Y=2)=0
P(X=2, Y=3)=0
P(X=3, Y=0)=1/8
P(X=3, Y=1)=0
P(X=3, Y=2)=0
P(X=3, Y=3)=0
Y X | 0 | 1 | 2 | 3 | Distribution of Y |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 1/8 | 1/8 |
1 | 0 | 0 | 3/8 | 0 | 3/8 |
2 | 0 | 3/8 | 0 | 0 | 3/8 |
3 | 1/8 | 0 | 0 | 0 | 1/8 |
Distribution of Y | 1/8 | 3/8 | 3/8 | 1/8 | 1 |
Marginal Probability Mass Function of X
px(0) = pxy(0,0) + pxy(0,1) + pxy(0,2) + pxy(0,3) = 0+0+0+1/8= 1/8
px(1) = pxy(1,0) + pxy(1,1) + pxy(1,2) + pxy(1,3) = 0+0+3/8+0= 3/8
px(2) = pxy(2,0) + pxy(2,1) + pxy(2,2) + pxy(2,3) = 0+3/8+0+0= 3/8
px(3) = pxy(3,0) + pxy(3,1) + pxy(3,2) + pxy(3,3) = 1/8+0+0+0= 1/8
Marginal Probability Mass Function of Y
py(0) = pxy(0,0) + pxy(1,0) + pxy(2,0) + pxy(3,0) = 0+0+0+1/8= 1/8
py(1) = pxy(0,1) + pxy(1,1) + pxy(2,1) + pxy(3,1) = 0+0+3/8+0= 3/8
py(2) = pxy(0,2) + pxy(1,2) + pxy(2,2) + pxy(3,2) = 0+3/8+0+0= 3/8
py(3) = pxy(0,3) + pxy(1,3) + pxy(2,3) + pxy(3,3) = 1/8+0+0+0= 1/8
PDF File