Continuous Random Variable and Probability Density Function
Data Science and A.I. Lecture Series
Continuous Random Variable and Probability Density Function
-
- A random variable is continuous if it can take any real value within a given range.
- Instead of probability mass function, we use probability density function (PDF), denoted by \( f(x) \).
- The probability that \( X \) lies in an interval \( (a, b) \) is given by:
\[ P(a \leq X \leq b) = \int_{a}^{b} f(x)dx. \]
-
- The total probability must sum to 1:
\[ \int_{-\infty}^{\infty} f(x)dx = 1. \]
Example: Find the Constant \( A \)
Given: \( f(x) = Ax^3, 0 \leq x \leq 1 \).
-
- The integral must equal 1:
\[ \int_0^1 Ax^3 dx = 1. \]
-
- Compute the integral:
\[ A \int_0^1 x^3 dx = A \left[ \frac{x^4}{4} \right]_0^1 = A \times \frac{1}{4}. \]
-
- Solving for \( A \):
\[ A \times \frac{1}{4} = 1 \Rightarrow A = 4. \]
Example: Probability Computation
Find \( P(0.2 < X < 0.5) \) for \( f(x) = 4x^3, 0 \leq x \leq 1 \).
-
- Compute the integral:
\[ P(0.2 < X < 0.5) = \int_{0.2}^{0.5} 4x^3 dx. \]
-
- Evaluate:
\[ 4 \times \left[ \frac{x^4}{4} \right]_{0.2}^{0.5}. \]
-
- Solve:
\[ \left[ x^4 \right]_{0.2}^{0.5} = (0.5)^4 – (0.2)^4 = 0.0625 – 0.0016 = 0.0609. \]
Video
Reach PostNetwork Academy
- Website: www.postnetwork.co
- YouTube Channel: www.youtube.com/@postnetworkacademy
- Facebook Page: www.facebook.com/postnetworkacademy
- LinkedIn Page: www.linkedin.com/company/postnetworkacademy
Thank You!