Central Limit Theorem (CLT) and Uniformly Minimum Variance Unbiased Estimator (UMVUE)

Central Limit Theorem (CLT) and Uniformly Minimum Variance Unbiased Estimator (UMVUE)

By: Bindeshwar Singh Kushwaha
Institute: PostNetwork Academy

Question 1

Suppose X1,X2, is an i.i.d. sequence of random variables with common variance σ2>0. Define:

Yn=1ni=1nX2i1,Zn=1ni=1nX2i

The asymptotic distribution (as n) of n(YnZn) is:

  • (a) N(0,1)
  • (b) N(0,σ2)
  • (c) N(0,2σ2)
  • (d) Degenerate at 0

Solution

We define:

Yn=1ni=1nX2i1,Zn=1ni=1nX2i

The expectations are:

E[Yn]=E[Zn]=E[X]

Variances:

Var(Yn)=σ2n,Var(Zn)=σ2n

Since Yn and Zn are independent, their difference has variance:

Var(YnZn)=Var(Yn)+Var(Zn)=2σ2n

Multiplying by n, we get:

Var(n(YnZn))=2σ2

By the Central Limit Theorem:

n(YnZn)dN(0,2σ2)

Thus, the correct answer is (c) N(0,2σ2).


Question 2

Let X1,X2,,Xn be i.i.d. observations from:

XiN(0,σ2),0<σ2<

Find the Uniformly Minimum Variance Unbiased Estimator (UMVUE) for σ2.

  • (a) 1ni=1nXi2
  • (b) 1n1i=1nXi2
  • (c) 1ni=1n(XiX¯)2
  • (d) 1n1i=1n(XiX¯)2

Solution

The sample variance is:

S2=1ni=1nXi2

Expectation:

E[S2]=n1nσ2

S2 is a biased estimator for σ2.

To correct this bias, we use:

σ^2=nn1S2=1n1i=1nXi2

Thus, the correct answer is (b) 1n1i=1nXi2.

PDF

Loading...

Video

Reach PostNetwork Academy

Thank You!

©Postnetwork-All rights reserved.