Maths

Binomial Distribution Data Science and A.I. Lecture Series

  Binomial Distribution Data Science and A.I. Lecture Series By Bindeshwar Singh Kushwaha | PostNetwork Academy Binomial Probability Function The binomial probability function is given by: \[ P(X = k) = \binom{n}{k} p^k (1 – p)^{n – k} \] where: \( n \) = total number of trials \( k \) = number of successes […]

Binomial Distribution Data Science and A.I. Lecture Series Read More »

Bernoulli Distribution in Probability and Statistics

Bernoulli Distribution Data Science and A.I. Lecture Series By Bindeshwar Singh Kushwaha | PostNetwork Academy Introduction to Bernoulli Distribution A Bernoulli trial is an experiment with only two possible outcomes: Success (1) and Failure (0). If p is the probability of success, then q = 1 – p is the probability of failure. A random

Bernoulli Distribution in Probability and Statistics Read More »

Addition, Multiplication Theorem of Expectation and Covariance

Addition, Multiplication Theorem of Expectation and Covariance Data Science and A.I. Lecture Series By Bindeshwar Singh Kushwaha PostNetwork Academy Outline Introduction Addition Theorem of Expectation Proof of Addition Theorem Multiplication Theorem of Expectation Proof of Multiplication Theorem Covariance Introduction Expectation (or expected value) is a fundamental concept in probability and statistics. It provides a measure

Addition, Multiplication Theorem of Expectation and Covariance Read More »

Moments and Other Measures in Terms of Expectations

  Moments and Other Measures in Terms of Expectations Data Science and A.I. Lecture Series By Bindeshwar Singh Kushwaha – PostNetwork Academy Moments The \( r^{th} \) order moment about any point \( A \) of a variable \( X \) is given by: For discrete variables: \[ \mu_r’ = \sum_{i=1}^{n} p_i (x_i – A)^r

Moments and Other Measures in Terms of Expectations Read More »

Bivariate Discrete Cumulative Distribution Function

Bivariate Discrete Cumulative Distribution Function Data Science and A.I. Lecture Series Author: Bindeshwar Singh Kushwaha Institute: PostNetwork Academy Joint and Marginal Distribution Functions for Discrete Random Variables Two-Dimensional Joint Distribution Function The distribution function of the two-dimensional random variable \((X, Y)\) for all real \(x\) and \(y\) is defined as: \[ F(x,y) = P(X \leq

Bivariate Discrete Cumulative Distribution Function Read More »

Some Questions Based on Discrete Probability Distributions

Some Questions Based on Discrete Probability Distributions Data Science and A.I. Lecture Series   Problem 1 2 bad articles are mixed with 5 good ones. Find the probability distribution of the number of bad articles if 2 articles are drawn at random. Let \( X \) be the number of bad articles drawn. Possible values:

Some Questions Based on Discrete Probability Distributions Read More »

Discrete Random Variable and Probability Mass Function

  Discrete Random Variable and Probability Mass Function Data Science and A.I. Lecture Series A random variable is said to be discrete if it has either a finite or a countable number of values. Countable values are those which can be arranged in a sequence, corresponding to natural numbers. Example: Number of students present each

Discrete Random Variable and Probability Mass Function Read More »

Random Variables and Probability Distributions

Random Variables and Probability Distributions Introduction to Random Variables In many experiments, we are interested in a numerical characteristic associated with outcomes of a random experiment. A random variable (RV) is a function that assigns a numerical value to each outcome of a random experiment. Example: Consider tossing a fair die twice and defining \(

Random Variables and Probability Distributions Read More »

Bayes’ Theorem and Examples | Data Science & AI

  Bayes’ Theorem and Examples Formula The formula for Bayes’ Theorem is given by: $$ P(E_i | A) = \frac{P(E_i) P(A | E_i)}{\sum_{j=1}^{n} P(E_j) P(A | E_j)} $$ Key Terminology \(E_i\) are hypotheses or possible causes. \(P(E_i)\) is the prior probability of \(E_i\). \(P(E_i | A)\) is the posterior probability of \(E_i\). The denominator ensures

Bayes’ Theorem and Examples | Data Science & AI Read More »

Addition and Multiplicative Laws Probability Explained

  Problems Using Both Addition and Multiplicative Laws Data Science and A.I. Lecture Series PostNetwork Academy Probability Laws The addition law of probability states: \[ P(A \cup B) = P(A) + P(B) – P(A \cap B) \] The multiplicative law of probability for independent events states: \[ P(A \cap B) = P(A) \cdot P(B) \]

Addition and Multiplicative Laws Probability Explained Read More »

©Postnetwork-All rights reserved.