Independence of Origin and Scale in Correlation Coefficient

Independence of Origin and Scale in Correlation Coefficient

Independence of Origin and Scale in Karl Pearson’s Correlation Coefficient

Definition of Correlation Coefficient

The correlation coefficient \( r(X, Y) \) is defined as:

\[
r(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}}.
\]

    • Covariance:

\[
\text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^n (x_i – \bar{X})(y_i – \bar{Y})
\]

    • Variance of \( X \):

\[
\text{Var}(X) = \frac{1}{n} \sum_{i=1}^n (x_i – \bar{X})^2
\]

    • Variance of \( Y \):

\[
\text{Var}(Y) = \frac{1}{n} \sum_{i=1}^n (y_i – \bar{Y})^2
\]

Transforming Variables

We apply the transformations:

\[
U = \frac{X – a}{h}, \quad V = \frac{Y – b}{k}, \quad h > 0, \quad k > 0.
\]

Substitute into the transformed variables:

\[
x_i = a + h u_i, \quad y_i = b + k v_i.
\]

Transformed means:

\[
\bar{X} = a + h \bar{U}, \quad \bar{Y} = b + k \bar{V}.
\]

Deviations from the Mean

The deviations from the mean are:

    • For \( x_i \):

\[
x_i – \bar{X} = h (u_i – \bar{U}),
\]

    • For \( y_i \):

\[
y_i – \bar{Y} = k (v_i – \bar{V}).
\]

Substitute these into the covariance formula:

\[
\text{Cov}(X, Y) = \frac{1}{n} \sum_{i=1}^n (x_i – \bar{X})(y_i – \bar{Y}),
\]

Simplifying further:

\[
\text{Cov}(X, Y) = hk \cdot \frac{1}{n} \sum_{i=1}^n (u_i – \bar{U})(v_i – \bar{V}).
\]

Simplified Covariance

    • Covariance of \( X \) and \( Y \):

\[
\text{Cov}(X, Y) = hk \cdot \text{Cov}(U, V).
\]

    • Variance of \( X \):

\[
\text{Var}(X) = h^2 \cdot \text{Var}(U).
\]

    • Variance of \( Y \):

\[
\text{Var}(Y) = k^2 \cdot \text{Var}(V).
\]

Substituting into Correlation Coefficient

Substitute into \( r(X, Y) \):

\[
r(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}}.
\]

Substituting the values:

\[
r(X, Y) = \frac{hk \cdot \text{Cov}(U, V)}{\sqrt{h^2 \cdot \text{Var}(U) \cdot k^2 \cdot \text{Var}(V)}}.
\]

Simplifying:

\[
r(X, Y) = r(U, V).
\]

PDF Presentation

corelprop1

Video

Conclusion

The correlation coefficient \( r(X, Y) \) remains unchanged under linear transformations:

\[
U = \frac{X – a}{h}, \quad V = \frac{Y – b}{k}.
\]

This demonstrates independence from:

  • Changes in origin (\( a, b \)),
  • Changes in scale (\( h, k \)).

This makes the correlation coefficient a robust measure of linear association.

Reach PostNetwork Academy

<h2

©Postnetwork-All rights reserved.